Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684795

RESUMO

Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder. In this study, we aimed to explore a presumed correlation between the transcriptome and the metabolome in a SCZ model based on patient-derived induced pluripotent stem cells (iPSCs). For this, iPSCs were differentiated towards cortical neurons and samples were collected longitudinally at various developmental stages, reflecting neuroepithelial-like cells, radial glia, young and mature neurons. The samples were analyzed by both RNA-sequencing and targeted metabolomics and the two modalities were used to construct integrative networks in silico. This multi-omics analysis revealed significant perturbations in the polyamine and gamma-aminobutyric acid (GABA) biosynthetic pathways during rosette maturation in SCZ lines. We particularly observed the downregulation of the glutamate decarboxylase encoding genes GAD1 and GAD2, as well as their protein product GAD65/67 and their biochemical product GABA in SCZ samples. Inhibition of ornithine decarboxylase resulted in further decrease of GABA levels suggesting a compensatory activation of the ornithine/putrescine pathway as an alternative route for GABA production. These findings indicate an imbalance of cortical excitatory/inhibitory dynamics occurring during early neurodevelopmental stages in SCZ. Our study supports the hypothesis of disruption of inhibitory circuits to be causative for SCZ and establishes a novel in silico approach that enables for integrative correlation of metabolic and transcriptomic data of psychiatric disease models.

2.
Gastroenterology ; 163(4): 965-981.e31, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738329

RESUMO

BACKGROUND & AIMS: Exhaustion of CD8 T cells has been suggested to inform different clinical outcomes in Crohn's disease, but detailed analyses are lacking. This study aimed to identify the role of exhaustion on a single-cell level and identify relevant CD8 T cell populations in Crohn's disease. METHODS: Blood and intestinal tissue from 58 patients with Crohn's disease (active disease or remission) were assessed for CD8 T cell expression of exhaustion markers and their cytokine profile by highly multiplexed flow and mass cytometry. Key disease-associated subsets were sorted and analyzed by RNA sequencing. CD39 inhibition assays were performed in vitro. RESULTS: Activated CD39+ and CD39+PD-1+ CD8 T cell subsets expressing multiple exhaustion markers were enriched at low frequency in active Crohn's disease. Their cytokine production capacity was inversely linked to the Harvey-Bradshaw Index. Subset-level protein and transcriptome profiling revealed co-existence of effector and exhaustion programs in CD39+ and CD39+ PD-1+CD8 T cells, with CD39+ cells likely originating from the intestine. CD39 enzymatic activity controlled T cell cytokine production. Importantly, transcriptional exhaustion signatures were enriched in remission in CD39-expressing subsets with up-regulation of TOX. Subset-level transcriptomics revealed a CD39-related gene module that is associated with the clinical course. CONCLUSIONS: These data showed a role for the exhaustion of peripheral CD39-expressing CD8 T cell subsets in Crohn's disease. Their low frequency illustrated the utility of single-cell cytometry methods for identification of relevant immune populations. Importantly, the link of their exhaustion status to the clinical activity and their specific gene signatures have implications for exhaustion-based personalized medicine approaches.


Assuntos
Apirase , Linfócitos T CD8-Positivos , Doença de Crohn , Apirase/sangue , Apirase/genética , Apirase/imunologia , Biomarcadores/sangue , Linfócitos T CD8-Positivos/imunologia , Doença de Crohn/sangue , Doença de Crohn/genética , Doença de Crohn/imunologia , Citocinas/imunologia , Humanos , Prognóstico , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T
3.
Cell Commun Signal ; 19(1): 123, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930313

RESUMO

BACKGROUND: Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS: By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS: Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS: Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.


Assuntos
Vemurafenib
4.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796510

RESUMO

Autoimmune diabetes is a complex multifactorial disease with genetic and environmental factors playing pivotal roles. While many genes associated with the risk of diabetes have been identified to date, the mechanisms by which external triggers contribute to the genetic predisposition remain unclear. Here, we derived embryonic stem (ES) cell lines from diabetes-prone non-obese diabetic (NOD) and healthy C57BL/6 (B6) mice. While overall pluripotency markers were indistinguishable between newly derived NOD and B6 ES cells, we discovered several differentially expressed genes that normally are not expressed in ES cells. Several genes that reside in previously identified insulin-dependent diabetics (Idd) genomic regions were up-regulated in NOD ES cells. Gene set enrichment analysis showed that different groups of genes associated with immune functions are differentially expressed in NOD. Transcriptomic analysis of NOD blastocysts validated several differentially overexpressed Idd genes compared to B6. Genome-wide mapping of active histone modifications using ChIP-Seq supports active expression as the promoters and enhancers of activated genes are also marked by active histone modifications. We have also found that NOD ES cells secrete more inflammatory cytokines. Our data suggest that the known genetic predisposition of NOD to autoimmune diabetes leads to epigenetic instability of several Idd regions.


Assuntos
Autoimunidade/genética , Blastocisto/metabolismo , Sistema Imunitário/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica , Animais , Quimiocinas/metabolismo , Cromatina/metabolismo , Diabetes Mellitus Experimental/genética , Epigênese Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteoma/metabolismo , Proteômica , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 113(16): E2316-25, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044095

RESUMO

To study the development and function of "natural-arising" T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3(+)CD4(+)Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) ß-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR ß-chain was able to provide stronger TCR signals. This TCR-ß-driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3(-)CD4(+)T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells.


Assuntos
Diferenciação Celular/imunologia , Modelos Imunológicos , Técnicas de Transferência Nuclear , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologia
6.
Genes Dev ; 24(4): 368-80, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20123894

RESUMO

The Polycomb group proteins foster gene repression profiles required for proper development and unimpaired adulthood, and comprise the components of the Polycomb-Repressive Complex 2 (PRC2) including the histone H3 Lys 27 (H3K27) methyltransferase Ezh2. How mammalian PRC2 accesses chromatin is unclear. We found that Jarid2 associates with PRC2 and stimulates its enzymatic activity in vitro. Jarid2 contains a Jumonji C domain, but is devoid of detectable histone demethylase activity. Instead, its artificial recruitment to a promoter in vivo resulted in corecruitment of PRC2 with resultant increased levels of di- and trimethylation of H3K27 (H3K27me2/3). Jarid2 colocalizes with Ezh2 and MTF2, a homolog of Drosophila Pcl, at endogenous genes in embryonic stem (ES) cells. Jarid2 can bind DNA and its recruitment in ES cells is interdependent with that of PRC2, as Jarid2 knockdown reduced PRC2 at its target promoters, and ES cells devoid of the PRC2 component EED are deficient in Jarid2 promoter access. In addition to the well-documented defects in embryonic viability upon down-regulation of Jarid2, ES cell differentiation is impaired, as is Oct4 silencing.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Ligação Proteica
7.
Nature ; 473(7345): 43-9, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21441907

RESUMO

Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.


Assuntos
Fenômenos Fisiológicos Celulares , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Regulação da Expressão Gênica , Genoma Humano/genética , Células Hep G2 , Humanos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
8.
Nucleic Acids Res ; 41(19): e181, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23945932

RESUMO

Gene-editing nucleases enable targeted modification of DNA sequences in living cells, thereby facilitating efficient knockout and precise editing of endogenous loci. Engineered nucleases also have the potential to introduce mutations at off-target sites of action. Such unintended alterations can confound interpretation of experiments and can have implications for development of therapeutic applications. Recently, two improved methods for identifying the off-target effects of zinc finger nucleases (ZFNs) were described-one using an in vitro cleavage site selection method and the other exploiting the insertion of integration-defective lentiviruses into nuclease-induced double-stranded DNA breaks. However, application of these two methods to a ZFN pair targeted to the human CCR5 gene led to identification of largely non-overlapping off-target sites, raising the possibility that additional off-target sites might exist. Here, we show that in silico abstraction of ZFN cleavage profiles obtained from in vitro cleavage site selections can greatly enhance the ability to identify potential off-target sites in human cells. Our improved method should enable more comprehensive profiling of ZFN specificities.


Assuntos
Clivagem do DNA , Desoxirribonucleases/metabolismo , Dedos de Zinco , Inteligência Artificial , Sequência de Bases , Simulação por Computador , DNA/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores CCR5/genética , Análise de Sequência de DNA , Fator A de Crescimento do Endotélio Vascular/genética
9.
Nature ; 454(7200): 49-55, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18509334

RESUMO

Somatic cells can be reprogrammed to a pluripotent state through the ectopic expression of defined transcription factors. Understanding the mechanism and kinetics of this transformation may shed light on the nature of developmental potency and suggest strategies with improved efficiency or safety. Here we report an integrative genomic analysis of reprogramming of mouse fibroblasts and B lymphocytes. Lineage-committed cells show a complex response to the ectopic expression involving induction of genes downstream of individual reprogramming factors. Fully reprogrammed cells show gene expression and epigenetic states that are highly similar to embryonic stem cells. In contrast, stable partially reprogrammed cell lines show reactivation of a distinctive subset of stem-cell-related genes, incomplete repression of lineage-specifying transcription factors, and DNA hypermethylation at pluripotency-related loci. These observations suggest that some cells may become trapped in partially reprogrammed states owing to incomplete repression of transcription factors, and that DNA de-methylation is an inefficient step in the transition to pluripotency. We demonstrate that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprogramming process.


Assuntos
Reprogramação Celular/genética , Genômica , Células-Tronco Pluripotentes/metabolismo , Animais , Azacitidina/farmacologia , Linhagem Celular , Linhagem da Célula , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Camundongos , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
11.
Nat Methods ; 7(1): 47-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19946276

RESUMO

Chromatin structure and transcription factor localization can be assayed genome-wide by sequencing genomic DNA fractionated by protein occupancy or other properties, but current technologies involve multiple steps that introduce bias and inefficiency. Here we apply a single-molecule approach to directly sequence chromatin immunoprecipitated DNA with minimal sample manipulation. This method is compatible with just 50 pg of DNA and should thus facilitate charting chromatin maps from limited cell populations.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/genética , Análise de Sequência de DNA/métodos , Animais , Viés , Cromatina/metabolismo , Perfilação da Expressão Gênica , Genoma/genética , Humanos , Camundongos , Fatores de Transcrição/metabolismo
12.
Nature ; 448(7151): 318-24, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17554336

RESUMO

Nuclear transplantation can reprogramme a somatic genome back into an embryonic epigenetic state, and the reprogrammed nucleus can create a cloned animal or produce pluripotent embryonic stem cells. One potential use of the nuclear cloning approach is the derivation of 'customized' embryonic stem (ES) cells for patient-specific cell treatment, but technical and ethical considerations impede the therapeutic application of this technology. Reprogramming of fibroblasts to a pluripotent state can be induced in vitro through ectopic expression of the four transcription factors Oct4 (also called Oct3/4 or Pou5f1), Sox2, c-Myc and Klf4. Here we show that DNA methylation, gene expression and chromatin state of such induced reprogrammed stem cells are similar to those of ES cells. Notably, the cells-derived from mouse fibroblasts-can form viable chimaeras, can contribute to the germ line and can generate live late-term embryos when injected into tetraploid blastocysts. Our results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.


Assuntos
Diferenciação Celular , Linhagem da Célula , Fibroblastos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Quimera/embriologia , Quimera/genética , Quimera/crescimento & desenvolvimento , Quimera/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Inativação Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Teratoma/metabolismo , Teratoma/patologia
13.
Nature ; 448(7153): 553-60, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17603471

RESUMO

We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations.


Assuntos
Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Genoma/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Alelos , Animais , Ilhas de CpG/genética , Fibroblastos , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Histonas/metabolismo , Masculino , Metilação , Camundongos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
14.
PLoS Genet ; 6(12): e1001244, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21170310

RESUMO

Polycomb proteins are epigenetic regulators that localize to developmental loci in the early embryo where they mediate lineage-specific gene repression. In Drosophila, these repressors are recruited to sequence elements by DNA binding proteins associated with Polycomb repressive complex 2 (PRC2). However, the sequences that recruit PRC2 in mammalian cells have remained obscure. To address this, we integrated a series of engineered bacterial artificial chromosomes into embryonic stem (ES) cells and examined their chromatin. We found that a 44 kb region corresponding to the Zfpm2 locus initiates de novo recruitment of PRC2. We then pinpointed a CpG island within this locus as both necessary and sufficient for PRC2 recruitment. Based on this causal demonstration and prior genomic analyses, we hypothesized that large GC-rich elements depleted of activating transcription factor motifs mediate PRC2 recruitment in mammals. We validated this model in two ways. First, we showed that a constitutively active CpG island is able to recruit PRC2 after excision of a cluster of activating motifs. Second, we showed that two 1 kb sequence intervals from the Escherichia coli genome with GC-contents comparable to a mammalian CpG island are both capable of recruiting PRC2 when integrated into the ES cell genome. Our findings demonstrate a causal role for GC-rich sequences in PRC2 recruitment and implicate a specific subset of CpG islands depleted of activating motifs as instrumental for the initial localization of this key regulator in mammalian genomes.


Assuntos
Células-Tronco Embrionárias/metabolismo , Sequência Rica em GC , Mamíferos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Humanos , Mamíferos/genética , Camundongos , Proteínas do Grupo Polycomb , Ligação Proteica , Proteínas Repressoras/genética
15.
Nat Commun ; 13(1): 3646, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752626

RESUMO

The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.


Assuntos
Proteína da Síndrome de Wiskott-Aldrich , Síndrome de Wiskott-Aldrich , Processamento Alternativo , Núcleo Celular/metabolismo , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
16.
Cancer Cell ; 40(6): 639-655.e13, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700707

RESUMO

Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Metabolômica/métodos
17.
PLoS Genet ; 4(10): e1000242, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18974828

RESUMO

In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes -- the first occupied by both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full repertoire of Polycomb complexes in pluripotent cells.


Assuntos
Cromatina/metabolismo , Ilhas de CpG , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Genoma Humano , Genoma , Proteínas Repressoras/metabolismo , Animais , Cromatina/química , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Biologia Computacional , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Metilação , Camundongos , Oxirredutases N-Desmetilantes/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Repressoras/genética
18.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187933

RESUMO

Rhabdomyosarcomas (RMS) are phenotypically and functionally heterogeneous. Both primary human RMS cultures and low-passage Myf6Cre,Pax3:Foxo1,p53 mouse RMS cell lines, which express the fusion oncoprotein Pax3:Foxo1 and lack the tumor suppressor Tp53 (Myf6Cre,Pax3:Foxo1,p53), exhibit marked heterogeneity in PAX3:FOXO1 (P3F) expression at the single cell level. In mouse RMS cells, P3F expression is directed by the Pax3 promoter and coupled to eYFP YFPlow/P3Flow mouse RMS cells included 87% G0/G1 cells and reorganized their actin cytoskeleton to produce a cellular phenotype characterized by more efficient adhesion and migration. This translated into higher tumor-propagating cell frequencies of YFPlow/P3Flow compared with YFPhigh/P3Fhigh cells. Both YFPlow/P3Flow and YFPhigh/P3Fhigh cells gave rise to mixed clones in vitro, consistent with fluctuations in P3F expression over time. Exposure to the anti-tropomyosin compound TR100 disrupted the cytoskeleton and reversed enhanced migration and adhesion of YFPlow/P3Flow RMS cells. Heterogeneous expression of PAX3:FOXO1 at the single cell level may provide a critical advantage during tumor progression.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/etiologia , Animais , Apoptose/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Anotação de Sequência Molecular , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Análise de Célula Única
19.
Cell Stem Cell ; 28(9): 1533-1548.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33910058

RESUMO

Sporadic Alzheimer's disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Idoso , Envelhecimento , Fibroblastos , Humanos , Neurônios
20.
Nat Med ; 27(10): 1806-1817, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34621053

RESUMO

Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.


Assuntos
Evolução Clonal/genética , Hematopoiese Clonal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndromes Mielodisplásicas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Feminino , Fator de Transcrição GATA2/genética , Mutação em Linhagem Germinativa/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Síndromes Mielodisplásicas/patologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA