Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398325

RESUMO

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Assuntos
Comunicação Celular/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA , Animais , Reprogramação Celular/genética , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/genética , Análise de Célula Única
2.
Hepatology ; 78(5): 1478-1491, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950514

RESUMO

BACKGROUND AND AIMS: The mammalian liver harbors heterogeneous cell types that communicate via local paracrine signaling. Recent studies have delineated the transcriptomic landscape of the liver in NASH that provides insights into liver cell heterogeneity, intercellular crosstalk, and disease-associated reprogramming. However, the nature of intrahepatic signaling and its role in NASH progression remain obscure. APPROACH AND RESULTS: Here, we performed transcriptomic analyses and identified cardiotrophin-like cytokine factor 1 (CLCF1), a member of the IL-6 family cytokines, as a cholangiocyte-derived paracrine factor that was elevated in the liver from diet-induced NASH mice and patients with NASH. Adenovirus-associated virus-mediated overexpression of CLCF1 in the liver ameliorated NASH pathologies in two diet-induced NASH models in mice, illustrating that CLCF1 induction may serve an adaptive and protective role during NASH pathogenesis. Unexpectedly, messenger RNA and protein levels of leukemia inhibitory factor receptor (LIFR), a subunit of the receptor complex for CLCF1, were markedly downregulated in NASH liver. Hepatocyte-specific inactivation of LIFR accelerated NASH progression in mice, supporting an important role of intrahepatic cytokine signaling in maintaining tissue homeostasis under metabolic stress conditions. CONCLUSIONS: Together, this study sheds light on the molecular nature of intrahepatic paracrine signaling during NASH pathogenesis and uncovers potential targets for therapeutic intervention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Comunicação Parácrina , Animais , Humanos , Camundongos , Citocinas/genética , Citocinas/metabolismo , Dieta/efeitos adversos , Modelos Animais de Doenças , Interleucinas/metabolismo , Fígado/metabolismo , Mamíferos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Comunicação Parácrina/genética , Comunicação Parácrina/fisiologia
3.
Hepatology ; 71(4): 1228-1246, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31469911

RESUMO

BACKGROUND AND AIMS: Nonalcoholic steatohepatitis (NASH) is a progressive liver disease that is characterized by liver injury, inflammation, and fibrosis. NASH pathogenesis is linked to reprogramming of chromatin landscape in the liver that predisposes hepatocytes to stress-induced tissue injury. However, the molecular nature of the putative checkpoint that maintains chromatin architecture and preserves hepatocyte health remains elusive. APPROACH AND RESULTS: Here we show that heterogeneous nuclear ribonucleoprotein U (hnRNPU), a nuclear matrix protein that governs chromatin architecture and gene transcription, is a critical factor that couples chromatin disruption to NASH pathogenesis. RNA-seq and chromatin immunoprecipitation-seq studies revealed an extensive overlap between hnRNPU occupancy and altered gene expression during NASH. Hepatocyte-specific inactivation of hnRNPU disrupted liver chromatin accessibility, activated molecular signature of NASH, and sensitized mice to diet-induced NASH pathogenesis. Mechanistically, hnRNPU deficiency stimulated the expression of a truncated isoform of TrkB (TRKB-T1) that promotes inflammatory signaling in hepatocytes and stress-induced cell death. Brain-derived neurotrophic factor treatment reduced membrane TRKB-T1 protein and protected mice from diet-induced NASH. CONCLUSIONS: These findings illustrate a mechanism through which disruptions of chromatin architecture drive the emergence of disease-specific signaling patterns that promote liver injury and exacerbate NASH pathogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Glicoproteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Modelos Animais de Doenças , Hepatócitos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/terapia , Proteínas Tirosina Quinases/genética , Transcriptoma
4.
J Biol Chem ; 291(26): 13679-88, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129234

RESUMO

5-Hydroxymethylcytosine (5hmC) is an epigenetic modification that is generated by ten-eleven translocation (TET) protein-mediated oxidation of 5-methylcytosine (5mC). 5hmC is associated with transcription regulation and is decreased in many cancers including melanoma. Accumulating evidence has suggested that 5hmC is functionally distinct from 5mC. Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) is the first known specific 5hmC reader that has higher affinity to 5hmC than 5mC, suggesting that UHRF2 might mediate 5hmC's function. Structural analysis has revealed the molecular mechanism of UHRF2-5hmC binding in vitro, but it is not clear how UHRF2 recognizes 5hmC in vivo In this study, we have identified zinc figure protein 618 (ZNF618) as a novel binding partner of UHRF2. ZNF618 specifically interacts with UHRF2 but not its paralog UHRF1. Importantly, ZNF618 co-localizes with UHRF2 at genomic loci that are enriched for 5hmC. The ZNF618 chromatin localization is independent of its interaction with UHRF2 and is through its first two zinc fingers. Instead, ZNF618 regulates UHRF2 chromatin localization. Collectively, our study suggests that ZNF618 is a key protein that regulates UHRF2 function as a specific 5hmC reader in vivo.


Assuntos
Cromatina/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , 5-Metilcitosina/análogos & derivados , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/genética , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/genética
5.
J Biol Chem ; 290(2): 851-60, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25451918

RESUMO

The maintenance of DNA methylation in nascent DNA is a critical event for numerous biological processes. Following DNA replication, DNMT1 is the key enzyme that strictly copies the methylation pattern from the parental strand to the nascent DNA. However, the mechanism underlying this highly specific event is not thoroughly understood. In this study, we identified topoisomerase IIα (TopoIIα) as a novel regulator of the maintenance DNA methylation. UHRF1, a protein important for global DNA methylation, interacts with TopoIIα and regulates its localization to hemimethylated DNA. TopoIIα decatenates the hemimethylated DNA following replication, which might facilitate the methylation of the nascent strand by DNMT1. Inhibiting this activity impairs DNA methylation at multiple genomic loci. We have uncovered a novel mechanism during the maintenance of DNA methylation.


Assuntos
Antígenos de Neoplasias/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Antígenos de Neoplasias/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Replicação do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidrólise , Ligação Proteica/genética , Ubiquitina-Proteína Ligases
7.
Sci Transl Med ; 16(738): eadk1866, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478630

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH), is an advanced stage of metabolic fatty liver disease. The pathogenic mechanisms of MASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. Recent work has implicated TREM2+ macrophages in various disease conditions, and substantial induction of TREM2+ NASH-associated macrophages (NAMs) serves as a hallmark of metabolic liver disease. Despite this, the mechanisms through which NAMs contribute to MASH pathogenesis remain poorly understood. Here, we identify membrane-spanning 4-domains a7 (MS4A7) as a NAM-specific pathogenic factor that exacerbates MASH progression in mice. Hepatic MS4A7 expression was strongly induced in mouse and human MASH and associated with the severity of liver injury. Whole-body and myeloid-specific ablation of Ms4a7 alleviated diet-induced MASH pathologies in male mice. We demonstrate that exposure to lipid droplets (LDs), released upon injury of steatotic hepatocytes, triggered NAM induction and exacerbated MASH-associated liver injury in an MS4A7-dependent manner. Mechanistically, MS4A7 drove NLRP3 inflammasome activation via direct physical interaction and shaped disease-associated cell states within the liver microenvironment. This work reveals the LD-MS4A7-NLRP3 inflammasome axis as a pathogenic driver of MASH progression and provides insights into the role of TREM2+ macrophages in disease pathogenesis.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Inflamassomos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Imunológicos/metabolismo
8.
Nat Commun ; 14(1): 4257, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468484

RESUMO

Skeletal muscle and thermogenic adipose tissue are both critical for the maintenance of body temperature in mammals. However, whether these two tissues are interconnected to modulate thermogenesis and metabolic homeostasis in response to thermal stress remains inconclusive. Here, we report that human and mouse obesity is associated with elevated Musclin levels in both muscle and circulation. Intriguingly, muscle expression of Musclin is markedly increased or decreased when the male mice are housed in thermoneutral or chronic cool conditions, respectively. Beige fat is then identified as the primary site of Musclin action. Muscle-transgenic or AAV-mediated overexpression of Musclin attenuates beige fat thermogenesis, thereby exacerbating diet-induced obesity and metabolic disorders in male mice. Conversely, Musclin inactivation by muscle-specific ablation or neutralizing antibody treatment promotes beige fat thermogenesis and improves metabolic homeostasis in male mice. Mechanistically, Musclin binds to transferrin receptor 1 (Tfr1) and antagonizes Tfr1-mediated cAMP/PKA-dependent thermogenic induction in beige adipocytes. This work defines the temperature-sensitive myokine Musclin as a negative regulator of adipose thermogenesis that exacerbates the deterioration of metabolic health in obese male mice and thus provides a framework for the therapeutic targeting of this endocrine pathway.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Branco , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Homeostase , Mamíferos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Obesidade/metabolismo , Termogênese
9.
Cell Metab ; 34(9): 1359-1376.e7, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35973424

RESUMO

The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that undergo pathophysiological reprogramming in disease states, such as non-alcoholic steatohepatitis (NASH). Patients with NASH are at an increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here, we show that diet-induced NASH is characterized by the induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic CD8+ T cells in the liver. The adipocyte-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbated the induction of tumor-prone liver immune microenvironment and NASH-related HCC, whereas transgenic NRG4 overexpression elicited protective effects in mice. In a therapeutic setting, recombinant NRG4-Fc fusion protein exhibited remarkable potency in suppressing HCC and prolonged survival in the treated mice. These findings pave the way for therapeutic intervention of liver cancer by targeting the NRG4 hormonal checkpoint.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neurregulinas/metabolismo , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Mamíferos/metabolismo , Camundongos , Neurregulinas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Microambiente Tumoral
10.
JCI Insight ; 3(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515030

RESUMO

Neuregulins (NRGs) are emerging as an important family of signaling ligands that regulate glucose and lipid homeostasis. NRG1 lowers blood glucose levels in obese mice, whereas the brown fat-enriched secreted factor NRG4 protects mice from high-fat diet-induced insulin resistance and hepatic steatosis. However, the therapeutic potential of NRGs remains elusive, given the poor plasma half-life of the native ligands. Here, we engineered a fusion protein using human NRG1 and the Fc domain of human IgG1 (NRG1-Fc) that exhibited extended half-life in circulation and improved potency in receptor signaling. We evaluated its efficacy in improving metabolic parameters and dissected the mechanisms of action. NRG1-Fc treatment triggered potent AKT activation in the liver, lowered blood glucose, improved insulin sensitivity, and suppressed food intake in obese mice. NRG1-Fc acted as a potent secretagogue for the metabolic hormone FGF21; however, the latter was largely dispensable for its metabolic effects. NRG1-Fc directly targeted the hypothalamic POMC neurons to promote membrane depolarization and increase firing rate. Together, NRG1-Fc exhibits improved pharmacokinetic properties and exerts metabolic benefits through dual inhibition of hepatic gluconeogenesis and caloric intake.


Assuntos
Ingestão de Energia/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos , Neuregulina-1/administração & dosagem , Obesidade/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Meia-Vida , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Neuregulina-1/genética , Neuregulina-1/farmacocinética , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , Resultado do Tratamento
11.
Oncotarget ; 7(31): 49710-49721, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27391345

RESUMO

Ovarian cancer is one of the most common cancers among women, accounting for more deaths than any other gynecological diseases. However, the survival rate for ovarian cancer has not essentially improved over the past thirty years. Thus, to understand the molecular mechanism of ovarian tumorigenesis is important for optimizing the early diagnosis and treating this disease. In this study, we observed obvious DNA lesions, especially DNA double strand breaks (DSBs) accompanying cell cycle checkpoint activation, in the human epithelial ovarian cancer samples, which could be due to the impaired DNA response machinery. Following this line, we found that these DNA damage response-deficient primary cancer cells were hypersensitive to DNA damage and lost their ability to repair the DNA breaks, leading to genomic instability. Of note, three key DNA damage response factors, RNF8, Ku70, and FEN1 exhibited dramatically decreased expression level, implying the dysfunctional DNA repair pathways. Re-expression of wild type RNF8, Ku70, or FEN1 in these cells restored the DNA lesions and also partially rescued the cells from death. Our current study therefore proposes that accumulated DNA lesions might be a potential driver of ovarian cancer and the impaired DNA damage responders could be the targets for clinical treatment.


Assuntos
Dano ao DNA , Neoplasias Ovarianas/patologia , Adulto , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Ensaio Cometa , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Endonucleases Flap/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Autoantígeno Ku/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases
12.
Nat Metab ; 1(5): 507-508, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-32694853
13.
Nat Commun ; 4: 2105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23812044

RESUMO

During meiotic prophase in males, the sex chromosomes partially synapse to form the XY body, a unique structure that recruits proteins involved in the DNA damage response, which is believed to be important for silencing of the sex chromosomes. It remains elusive how the DNA damage response in the XY body is regulated. Here we show that H2AX-MDC1-RNF8 signaling, which is well characterized in somatic cells, is dispensable for the recruitment of proteins to the unsynapsed axes in the XY body. On the other hand, the DNA damage response that spreads over the sex chromosomes is largely similar to that in somatic cells. This analysis shows that there are important differences between the regulation of the DNA damage response at the XY body and at DNA damage sites in somatic cells.


Assuntos
Dano ao DNA , Meiose , Cromossomos Sexuais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Pareamento Cromossômico , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Estágio Paquíteno , Estrutura Terciária de Proteína , Transporte Proteico , Espermatócitos/citologia , Espermatócitos/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA