RESUMO
Neu1 is a glycosidase that releases sialic acids from the non-reducing ends of glycoconjugates, and its enzymatic properties are conserved among vertebrates. Recently, Neu1-KO zebrafish were generated using genome editing technology, and the KO fish showed abnormal emotional behavior, such as low schooling, low aggressiveness, and excess exploratory behavior, accompanied by the downregulation of anxiety-related genes. To examine the alteration of neuronal and glial cells in Neu1-KO zebrafish, we analyzed the molecular profiles in the zebrafish brain, focusing on the midbrain and telencephalon. Using immunohistochemistry, we found that signals of Maackia amurensis (MAM) lectin that recognizes Sia α2-3 linked glycoconjugates were highly increased in Neu1-KO zebrafish brains, accompanied by an increase in Lamp1a. Neu1-KO zebrafish suppressed the gene expression of AMPA-type glutamate receptors such as gria1a, gria2a, and gria3b, and vesicular glutamate transporter 1. Additionally, Neu1-KO zebrafish induced the hyperactivation of astrocytes accompanied by an increase in Gfap and phosphorylated ERK levels, while the mRNA levels of astrocyte glutamate transporters (eaat1a, eaat1c, and eaat2) were downregulated. The mRNA levels of sypb and ho1b, which are markers of synaptic plasticity, were also suppressed by Neu1 deficiency. Abnormal activity of microglia was also revealed by IHC, and the expressions of iNOS and IL-1ß, an inflammatory cytokine, were increased in Neu1-KO zebrafish. Furthermore, drastic neuronal degeneration was detected in Neu1-KO zebrafish using Fluoro-Jade B staining. Collectively, the neuronal and glial abnormalities in Neu1-KO zebrafish may be caused by changes in the excitatory neurotransmitter glutamate and involved in the emotional abnormalities.
Assuntos
Neuraminidase , Peixe-Zebra , Animais , Glutamatos , Glicoconjugados , Neuraminidase/genética , Neuroglia/metabolismo , RNA Mensageiro/metabolismo , Peixe-Zebra/genéticaRESUMO
Sialic acid and its catabolism are involved in bacterial pathogenicity. N-acetylneuraminate lyase (NAL), which catalyzes the reversible aldol cleavage of sialic acid to form N-acetyl-D-mannosamine in the first step of sialic acid degradation, has been recently investigated to elucidate whether NAL enhances bacterial virulence; however, the role of NAL in bacterial pathogenicity remains unclear. In the present study, we demonstrated that the existence of two enzymes in Edwardsiella piscicida, referred to as dihydrodipicolinate synthase (DHDPS) and NAL, induced the cleavage/condensation activity toward sialic acids such as N-acetylneuraminic acid, N-glycolylneuraminic acid and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid. NAL enhanced cellular infection in vitro and suppressed the survival rate in zebrafish larvae in bath-infection in vivo, whereas DHDPS did not. Furthermore, NAL strongly activated the expression of E. piscicida phenotypes such as biofilm formation and motility, whereas DHDPS did not. Besides, the gene expression level of nanK, nanE, and glmU were up-regulated in the NAL-overexpressing strain, along with an increase in the total amount of N-acetylglucosamine.
Assuntos
Ácido N-Acetilneuramínico , Peixe-Zebra , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Edwardsiella , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-LiasesRESUMO
Nuclear sialoglycans are minor components in the nucleus, and their biological significance was not well understood. Recently, Nile tilapia Neu4 sialidase (OnNeu4) was identified and reported as the first nuclear sialidase in vertebrates. Although OnNeu4 possesses the nuclear localization signal (NLS) required for nuclear localization, other fish Neu4 sialidases, such as zebrafish and Japanese medaka, also possess NLS, but their subcellular localizations are not nucleus. To understand the nuclear localization mechanism of fish Neu4, we focused on Mexican tetra Neu4 (AmNeu4), which, unlike Neu4 in other fishes, has a bipartite NLS. AmNeu4 exhibited a wide range of optimal pH and substrate specificity, and its gene expression was specifically detected in the liver, spleen, and gut in adult fish. AmNeu4, like OnNeu4, exhibited nuclear localization, which was attenuated by importin inhibitor, and deletion of the bipartite NLS completely reduced the nuclear localization. In addition, the conjugation of the bipartite NLS of AmNeu4 made GFP show nuclear localization. To understand the mechanism of nuclear localization of AmNeu4 and OnNeu4, we compared fish Neu4 amino acid sequences and focused on the less conserved region of Neu4 sialidase (LCR). LCR-deletion mutants of AmNeu4 and OnNeu4 showed significantly reduced the nuclear localization. The LCR region in AmNeu4 and OnNeu4 possessed consecutive Ser/Thr. The Neu4 mutants in which consecutive Ser/Thr in LCR were changed to Ala or deleted significantly suppressed the nuclear localization. These results suggest that the nuclear localization of Neu4 in Nile tilapia and Mexican tetra may be regulated by NLS and LCR.
Assuntos
Characidae , Sinais de Localização Nuclear , Animais , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Neuraminidase/química , Sinais de Localização Nuclear/genéticaRESUMO
Anxiety is a symptom of various mental disorders, including depression. Severe anxiety can significantly affect the quality of life. Hesperidin (Hes), a flavonoid found in the peel of citrus fruits, reportedly has various functional properties, one of which is its ability to relieve acute and chronic stress. However, Hes is insoluble in water, resulting in a low absorption rate in the body and low bioavailability. Glucosyl hesperidin (GHes) is produced by adding one glucose molecule to hesperidin. Its water solubility is significantly higher than that of Hes, which is expected to improve its absorption into the body and enhance its effects. However, its efficacy in alleviating anxiety has not yet been investigated. Therefore, in this study, the anxiolytic effects of GHes were examined in a zebrafish model of anxiety. Long-term administration of diets supplemented with GHes did not cause any toxicity in the zebrafish. In the novel tank test, zebrafish in the control condition exhibited an anxious behavior called freezing, which was significantly suppressed in GHes-fed zebrafish. In the black-white preference test, which also induces visual stress, GHes-fed zebrafish showed significantly increased swimming time in the white side area. Furthermore, in tactile (low water-level stress) and olfactory-mediated stress (alarm substance administration test) tests, GHes suppressed anxious behavior, and these effects were stronger than those of Hes. Increased noradrenaline levels in the brain generally cause freezing; however, in zebrafish treated with GHes, the amount of noradrenaline after stress was lower than that in the control group. Activation of c-fos/ERK/Th, which is upstream of the noradrenaline synthesis pathway, was also suppressed, while activation of the CREB/BDNF system, which is vital for neuroprotective effects, was significantly increased. These results indicate that GHes has a more potent anxiolytic effect than Hes in vivo, which may have potential applications in drug discovery and functional food development.
RESUMO
Neu1 is a lysosomal glycosidase that catalyzes the removal of sialic acids from glycoconjugates. Although Neu1 sialidase is highly conserved among vertebrates, the role of fish Neu1 is not fully understood because of its unique aquatic living situation. Compared to land animals, fish have a higher chance of bacterial infection, and to understand the role of fish Neu1, the susceptibility of Neu1 knockout zebrafish (Neu1-KO) was evaluated using Edwardsiella piscicida, a fish pathogen. Neu1-KO larvae showed high susceptibility to E. piscicida, despite the activation of macrophages, and presented increased lysosomal signals induced by the accumulation of Sia α2-3 linked oligosaccharides. The accumulation coincided with the signal of the macrophage marker, suggesting that the dysfunction of lysosomes in macrophages would result in a high susceptibility of Neu1-KO to E. piscicida. Chloroquine, an inhibitor of lysosomal degradation, induced high mortality of wild type zebrafish with E. piscicida infection accompanied by increased lysosomal accumulation, similar to Neu1-KO zebrafish. This study revealed that Neu1 sialidase plays a crucial role in the lysosomal degradation of macrophages with a bacterial infection.