Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 110(12): 2581-2584, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27288275

RESUMO

Liquid-liquid phase separation in giant unilamellar vesicles (GUVs) leads to the formation of intramembrane domains. To mimic charged biological membranes, we studied phase separation and domain formation in GUVs of ternary lipid mixtures composed of egg sphingomyelin, cholesterol, and the negatively charged lipid dioleoylphosphatidylglycerol. The GUVs were exposed to solutions of sucrose and high-saline buffer. The phase diagram was determined using epifluorescence microscopy for vesicle populations with symmetric and asymmetric solution compositions across the membranes. Trans-membrane solution asymmetry was found to affect the membrane phase state. Furthermore, compared to the case of salt-free conditions, the phase diagram in the presence of high-saline buffer (both symmetrically or asymmetrically present across the membrane) was found to exhibit a significantly extended region of liquid-ordered and liquid-disordered coexistence. These observations were confirmed on single GUVs using microfluidics and confocal microscopy. Moreover, we found that the miscibility temperatures markedly increased for vesicles in the presence of symmetric and asymmetric salt solutions. Our results demonstrate a substantial effect of salt and solution asymmetry on the phase behavior of charged membranes, which has direct implications for protein adsorption onto these membranes and for the repartitioning of proteins within the membrane domains.


Assuntos
Sais/química , Lipossomas Unilamelares/química , Colesterol/química , Proteínas do Ovo/química , Microdomínios da Membrana/química , Técnicas Analíticas Microfluídicas , Microscopia Confocal , Microscopia de Fluorescência , Transição de Fase , Fosfatidilgliceróis/química , Soluções/química , Esfingomielinas/química , Sacarose/química , Temperatura
2.
J Biol Chem ; 288(34): 24666-75, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836890

RESUMO

Na(+)/H(+) antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na(+)/H(+) antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KD(Na) are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15-20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Mutação de Sentido Incorreto , Trocadores de Sódio-Hidrogênio/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia , Estrutura Terciária de Proteína , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
3.
Biochem Biophys Res Commun ; 436(3): 491-6, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23756812

RESUMO

Glutaredoxins that contain a Cys-X-X-Cys active site motif are glutathione-dependent thiol-disulfide oxidoreductases. Vertebrate glutaredoxin 2 is characterized by two extra cysteines that form an intra-molecular disulfide bridge. Zebrafish glutaredoxin 2 contains four additional cysteines that are conserved within the infraclass of bony fish (teleosts). Here, we present a biochemical and biophysical characterization of zebrafish glutaredoxin 2, focusing on iron-sulfur-cluster coordination. The coordination of [2Fe2S](2+)-clusters in monomers of this protein was revealed by both absorption and Mössbauer spectroscopy as well as size exclusion chromatography. All other holo-glutaredoxins represent [FeS]-cluster bridged dimers using two molecules of non-covalently bound glutathione and the N-terminal active site cysteines as ligands. These cysteine residues were not required for [FeS]-cluster coordination in zebrafish glutaredoxin 2. A crystal structure of the teleost protein revealed high structural similarity to its human homologue. The two vertebrate-specific cysteines as well as two of the teleost-specific cysteines are positioned within a radius of 7Å near the C-terminus suggesting a potential role in [FeS]-cluster coordination. Indeed, mutated proteins lacking these teleost-specific cysteines lost the ability to bind the cofactor. Hence, the apparent mode of [FeS]-cluster coordination in zebrafish glutaredoxin 2 could be different from all yet described [FeS]-glutaredoxins.


Assuntos
Glutarredoxinas/química , Proteínas Ferro-Enxofre/química , Proteínas de Peixe-Zebra/química , Peixe-Zebra/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico , Cisteína/química , Ativação Enzimática , Humanos , Ligantes , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos
4.
J Vis Exp ; (128)2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29155700

RESUMO

Phase-separated giant unilamellar vesicles (GUVs) exhibiting coexisting liquid-ordered and liquid-disordered domains are a common biophysical tool to investigate the lipid raft hypothesis. Numerous studies, however, neglect the impact of physiological solution conditions. On that account, the current work presents the effect of high-salinity buffer and trans-membrane solution asymmetry on liquid-liquid phase separation in charged GUVs grown from dioleylphosphatidylglycerol, egg sphingomyelin, and cholesterol. The effects were studied under isothermal and varying temperature conditions. We describe equipment and experimental strategies applicable for monitoring the stability of coexisting liquid domains in charged vesicles under symmetric and asymmetric high-salinity solution conditions. This includes an approach to prepare charged multicomponent GUVs in high-salinity buffer at high temperatures. The protocol entails the option to perform a partial exchange of the external solution by a simple dilution step while minimizing the vesicle dilution. An alternative approach is presented utilizing a microfluidic device that allows for a complete external solution exchange. The solution effects on phase separation were also studied under varying temperatures. To this end, we present the basic design and utility of an in-house built temperature control chamber. Furthermore, we reflect on the assessment of the GUV phase state, pitfalls associated with it and how to circumvent them.


Assuntos
Vesículas Extracelulares/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Vesículas Extracelulares/metabolismo , Fosfatidilcolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA