RESUMO
We present evidence for an ultrafast optically induced ferromagnetic alignment of antiferromagnetic Mn in Co/Mn multilayers. We observe the transient ferromagnetic signal at the arrival of the pump pulse at the Mn L_{3} resonance using x-ray magnetic circular dichroism in reflectivity. The timescale of the effect is comparable to the duration of the excitation and occurs before the magnetization in Co is quenched. Theoretical calculations point to the imbalanced population of Mn unoccupied states caused by the Co interface for the emergence of this transient ferromagnetic state.
RESUMO
The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.
RESUMO
Metal octaethylporphyrins (M-OEP), M-N(4)C(20)H(4)(C(2)H(5))(8), adsorbed at a metallic substrate are promising candidates to provide spin dependent electric transport. Despite these systems having been studied extensively by experiment, details of the adsorbate geometry and surface binding are still unclear. We have carried out density functional theory calculations for cobalt octaethyl porphyrin (Co-OEP) adsorbate at clean and oxygen-covered Ni(100) surfaces as well as for the free Co-OEP molecule where equilibrium structures were obtained by corresponding energy optimizations. These geometries were then used in calculations of Co-OEP carbon and nitrogen 1s core excitations yielding theoretical excitation spectra to be compared with corresponding K-edge x-ray absorption fine structure (NEXAFS) measurements. The experimental NEXAFS spectra near the carbon K-edge of Co-OEP bulk material show large intensity close to the ionization threshold and a triple-peak structure at lower energies, which can be reproduced by the calculations on free Co-OEP. The experimental nitrogen K-edge spectra of adsorbed Co-OEP layers exhibit always a double-peak structure below ionization threshold, independent of the layer thickness. The peaks are shifted slightly and their separation varies with adsorbate-substrate distance. This can be explained by hybridization of N 2p with corresponding 3d contributions of the Ni substrate in the excited final state orbitals as a result of adsorbate-substrate binding via N-Ni bond formation.
RESUMO
We determine the composition of intrinsic as well as extrinsic contributions to the anomalous Hall effect (AHE) in the isoelectronic L1_{0} FePd and FePt alloys. We show that the AHE signal in our 30 nm thick epitaxially deposited films of FePd is mainly due to an extrinsic side jump, while in the epitaxial FePt films of the same thickness and degree of order the intrinsic contribution is dominating over the extrinsic mechanisms of the AHE. We relate this crossover to the difference in spin-orbit strength of Pt and Pd atoms and suggest that this phenomenon can be used for tuning the origins of the AHE in complex alloys.
RESUMO
We report on a study of the magnetic domain coupling in epitaxial wedge-shaped Fe layers deposited onto CoO/Ag(001). By using photoelectron emission microscopy (PEEM) in combination with x-ray magnetic circular and linear dichroism (XMCD, XMLD), we imaged the ferromagnetic and antiferromagnetic domains present in the Fe and CoO layers, respectively, below the CoO magnetic ordering temperature. The uncompensated Co spins at the Fe/CoO interface were revealed by XMCD-PEEM and were found to be coupled parallel to the magnetization of the Fe layer. An increase of the CoO XMLD contrast is visible for Fe thicknesses below 2 ML, where the Fe layer lacks magnetic long-range order.
RESUMO
Using x-ray absorption spectroscopy, we demonstrate that the electronic properties of Co-octaethylporphyrin (CoOEP) molecules on oxygen-covered ultrathin Ni films can be reversibly manipulated by a chemical stimulus. This is achieved by adsorption of nitrogen monoxide (NO), leading to the formation of a NO-CoOEP nitrosyl complex, and subsequent thermal desorption of the NO from the Co ions. The integration of the absorption spectra of the Co L(2,3) edges reveals a partial oxidation of the Co ions after dosing with NO compared to the pristine sample, for which a valency of 2+ and a low-spin state of the Co ions can be deduced from the Co L(2,3) XAS line shape. By means of x-ray magnetic circular dichroism the magnetic moments of the Co ions were found to be coupled parallel to the magnetization of the Ni films across the intermediate layer of atomic oxygen, before and after NO uptake.
RESUMO
We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.
RESUMO
We demonstrate that an antiferromagnetic coupling between paramagnetic Fe-porphyrin molecules and ultrathin Co and Ni magnetic films on Cu(100) substrates can be established by an intermediate layer of atomic oxygen. The coupling energies have been determined from the temperature dependence of x-ray magnetic circular dichroism measurements. By density functional theory+U calculations the coupling mechanism is shown to be superexchange between the Fe center of the molecules and Co surface-atoms, mediated by oxygen.
RESUMO
We present a study of the ordering temperature of an ultrathin antiferromagnetic film in the proximity of a ferromagnetic layer. The Néel temperature of a single-crystalline antiferromagnetic FexMn1-x film on Cu(001) in contact with a ferromagnetic Ni layer was monitored by the discontinuity in the coercivity as a function of temperature by magneto-optical Kerr effect measurements. It decreases by up to 60 K if the magnetization axis of the ferromagnet is switched from out of plane to in plane by deposition of a Co overlayer. These results give clear evidence for a magnetic proximity effect in which the ferromagnetic layer substantially influences the ordering temperature of the antiferromagnetic layer.
RESUMO
To realize molecular spintronic devices, it is important to externally control the magnetization of a molecular magnet. One class of materials particularly promising as building blocks for molecular electronic devices is the paramagnetic porphyrin molecule in contact with a metallic substrate. Here, we study the structural orientation and the magnetic coupling of in-situ-sublimated Fe porphyrin molecules on ferromagnetic Ni and Co films on Cu(100). Our studies involve X-ray absorption spectroscopy and X-ray magnetic circular dichroism experiments. In a combined experimental and computational study we demonstrate that owing to an indirect, superexchange interaction between Fe atoms in the molecules and atoms in the substrate (Co or Ni) the paramagnetic molecules can be made to order ferromagnetically. The Fe magnetic moment can be rotated along directions in plane as well as out of plane by a magnetization reversal of the substrate, thereby opening up an avenue for spin-dependent molecular electronics.
Assuntos
Ferro/química , Magnetismo/instrumentação , Metaloporfirinas/química , Cobalto/química , Simulação por Computador , Modelos Moleculares , Estrutura MolecularRESUMO
Characterization and control of the interface structure and morphology at the atomic level is an important issue in understanding the magnetic interaction between an antiferromagnetic material and an adjacent ferromagnet in detail, because the atomic spins in an antiferromagnet change direction on the length scale of nearest atomic distances. Despite its technological importance for the development of advanced magnetic data-storage devices and extensive studies, the details of the magnetic interface coupling between antiferromagnets and ferromagnets have remained concealed. Here we present the results of magneto-optical Kerr-effect measurements and layer-resolved spectro-microscopic magnetic domain imaging of single-crystalline ferromagnet-antiferromagnet- ferromagnet trilayers. Atomic-level control of the interface morphology is achieved by systematically varying the thicknesses of the bottom ferromagnetic and the antiferromagnetic layer. We find that the magnetic coupling across the interface is mediated by step edges of single-atom height, whereas atomically flat areas do not contribute.
RESUMO
The dynamics of magnetic domain wall motion in the FeNi layer of a FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic circular dichroism, photoelectron emission microscopy, and a stroboscopic pump-probe technique. The nucleation of domains and subsequent expansion by domain wall motion in the FeNi layer during nanosecond-long magnetic field pulses was observed in the viscous regime up to the Walker limit field. We attribute an observed delay of domain expansion to the influence of the domain wall energy that acts against the domain expansion and that plays an important role when domains are small.