Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Autoimmun ; 148: 103279, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972102

RESUMO

B cells of people with multiple sclerosis (MS) are more responsive to IFN-γ, corresponding to their brain-homing potential. We studied how a coding single nucleotide polymorphism (SNP) in IFNGR2 (rs9808753) co-operates with Epstein-Barr virus (EBV) infection as MS risk factors to affect the IFN-γ signaling pathway in human B cells. In both cell lines and primary cells, EBV infection positively associated with IFN-γ receptor expression and STAT1 phosphorylation. The IFNGR2 risk SNP selectively promoted downstream signaling via STAT1, particularly in transitional B cells. Altogether, EBV and the IFNGR2 risk SNP independently amplify IFN-γ signaling, potentially driving B cells to enter the MS brain.

2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834363

RESUMO

An altered immune response has been identified as a pathophysiological factor in Parkinson's disease (PD). We aimed to identify blood immunity-associated proteins that discriminate PD from controls and that are associated with long-term disease severity in PD patients. Immune response-derived proteins in blood plasma were measured using Proximity Extension Technology by OLINK in a cohort of PD patients (N = 66) and age-matched healthy controls (N = 52). In a selection of 30 PD patients, we evaluated changes in protein levels 7-10 years after the baseline and assessed correlations with motor and cognitive assessments. Data from the Parkinson's Disease Biomarkers Program (PDBP) cohort and the Parkinson's Progression Markers Initiative (PPMI) cohort were used for independent validation. PD patients showed an altered immune response compared to controls based on a panel of four proteins (IL-12B, OPG, CXCL11, and CSF-1). The expression levels of five inflammation-associated proteins (CCL23, CCL25, TNFRSF9, TGF-alpha, and VEGFA) increased over time in PD and were partially associated with more severe motor and cognitive symptoms at follow-up. Increased CCL23 levels were associated with cognitive decline and the APOE4 genotype. Our findings provide further evidence for an altered immune response in PD that is associated with disease severity in PD over a long period of time.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Biomarcadores/metabolismo , Gravidade do Paciente , Proteínas de Transporte , Progressão da Doença
3.
Med ; 5(4): 368-373.e3, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38531361

RESUMO

BACKGROUND: In multiple sclerosis (MS), B cells are considered main triggers of the disease, likely as the result of complex interaction between genetic and environmental risk factors. Studies on monozygotic twins discordant for MS offer a unique way to reduce this complexity and reveal discrepant subsets. METHODS: In this study, we analyzed B cell subsets in blood samples of monozygotic twins with and without MS using publicly available data. We verified functional characteristics by exploring the role of therapy and performed separate analyses in unrelated individuals. FINDINGS: The frequencies of CXCR3+ memory B cells were reduced in the blood of genetically identical twins with MS compared to their unaffected twin siblings. Natalizumab (anti-VLA-4 antibody) was the only treatment regimen under which these frequencies were reversed. The CNS-homing features of CXCR3+ memory B cells were supported by elevated CXCL10 levels in MS cerebrospinal fluid and their in vitro propensity to develop into antibody-secreting cells. CONCLUSIONS: Circulating CXCR3+ memory B cells are affected by non-heritable cues in people who develop MS. This underlines the requirement of environmental risk factors such as Epstein-Barr virus in triggering these B cells. We propose that after CXCL10-mediated entry into the CNS, CXCR3+ memory B cells mature into antibody-secreting cells to drive MS. FUNDING: This work was supported by Nationaal MS Fonds (OZ2021-016), Stichting MS Research (19-1057 MS, 20-490f MS, and 21-1142 MS), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement no. 882424, and the Swiss National Science Foundation (733 310030_170320, 310030_188450, and CRSII5_183478).


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Células B de Memória , Herpesvirus Humano 4 , Natalizumab , Receptores CXCR3
4.
Immunol Lett ; 261: 66-74, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451321

RESUMO

B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.


Assuntos
Doenças Autoimunes , Infecções por Vírus Epstein-Barr , Lúpus Eritematoso Sistêmico , Humanos , Herpesvirus Humano 4/genética , Fatores de Risco
5.
Trends Mol Med ; 27(12): 1095-1105, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635427

RESUMO

ATP-citrate lyase (Acly) is the target of the new class low-density lipoprotein-cholesterol (LDL-C)-lowering drug bempedoic acid (BA). Acly is a key metabolic enzyme synthesizing acetyl-CoA as the building block of cholesterol and fatty acids. Treatment with BA lowers circulating lipid levels and reduces systemic inflammation, suggesting a dual benefit of this drug for atherosclerosis therapy. Recent studies have shown that targeting Acly in macrophages can attenuate inflammatory responses and decrease atherosclerotic plaque vulnerability. Therefore, it could be beneficial to extend the application of Acly inhibition from solely lipid-lowering by liver-specific inhibition to also targeting macrophages in atherosclerosis. Here, we outline the possibilities of targeting Acly and describe the future needs to translate these findings to the clinic.


Assuntos
ATP Citrato (pro-S)-Liase , Aterosclerose , ATP Citrato (pro-S)-Liase/metabolismo , Trifosfato de Adenosina , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , LDL-Colesterol/uso terapêutico , Humanos , Complexos Multienzimáticos , Oxo-Ácido-Liases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA