Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Biol Chem ; 300(7): 107429, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825010

RESUMO

Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.

2.
J Biol Chem ; 299(1): 102795, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528064

RESUMO

Shiga toxin 2a (Stx2a) is the virulence factor of enterohemorrhagic Escherichia coli. The catalytic A1 subunit of Stx2a (Stx2A1) interacts with the ribosomal P-stalk for loading onto the ribosome and depurination of the sarcin-ricin loop, which halts protein synthesis. Because of the intrinsic flexibility of the P-stalk, a structure of the Stx2a-P-stalk complex is currently unknown. We demonstrated that the native P-stalk pentamer binds to Stx2a with nanomolar affinity, and we employed cryo-EM to determine a structure of the 72 kDa Stx2a complexed with the P-stalk. The structure identifies Stx2A1 residues involved in binding and reveals that Stx2a is anchored to the P-stalk via only the last six amino acids from the C-terminal domain of a single P-protein. For the first time, the cryo-EM structure shows the loop connecting Stx2A1 and Stx2A2, which is critical for activation of the toxin. Our principal component analysis of the cryo-EM data reveals the intrinsic dynamics of the Stx2a-P-stalk interaction, including conformational changes in the P-stalk binding site occurring upon complex formation. Our computational analysis unveils the propensity for structural rearrangements within the C-terminal domain, with its C-terminal six amino acids transitioning from a random coil to an α-helix upon binding to Stx2a. In conclusion, our cryo-EM structure sheds new light into the dynamics of the Stx2a-P-stalk interaction and indicates that the binding interface between Stx2a and the P-stalk is the potential target for drug discovery.


Assuntos
Escherichia coli O157 , Ribossomos , Toxina Shiga II , Aminoácidos/metabolismo , Microscopia Crioeletrônica , Ribossomos/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Escherichia coli O157/química
3.
Mol Cell ; 64(6): 1035-1047, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27889453

RESUMO

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.


Assuntos
Bacteriófago T7/genética , DNA Primase/genética , Replicação do DNA , DNA Viral/genética , Bacteriófago T7/metabolismo , Bacteriófago T7/ultraestrutura , DNA/biossíntese , DNA/genética , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Cinética , Imagem Individual de Molécula/métodos , Imagem com Lapso de Tempo/métodos
4.
J Biol Chem ; 298(5): 101973, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35461810

RESUMO

Oxidation of protein methionines to methionine sulfoxides can result in protein structural alterations with a wide variety of biological implications. Factors that determine susceptibility to oxidation are not well understood. The recent JBC Editors Pick by Walker et al. applied proteomic methodologies to show that the oxidative susceptibility of buried methionine residues is strongly correlated with folding stability of the contextual peptide. Proteome-wide analysis of oxidation-susceptible methionines promises to answer open questions about the biological functions of reversible methionine oxidation.


Assuntos
Metionina , Proteômica , Metionina/química , Metionina/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(10): E1848-E1856, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223502

RESUMO

We present a structure of the ∼650-kDa functional replisome of bacteriophage T7 assembled on DNA resembling a replication fork. A structure of the complex consisting of six domains of DNA helicase, five domains of RNA primase, two DNA polymerases, and two thioredoxin (processivity factor) molecules was determined by single-particle cryo-electron microscopy. The two molecules of DNA polymerase adopt a different spatial arrangement at the replication fork, reflecting their roles in leading- and lagging-strand synthesis. The structure, in combination with biochemical data, reveals molecular mechanisms for coordination of leading- and lagging-strand synthesis. Because mechanisms of DNA replication are highly conserved, the observations are relevant to other replication systems.


Assuntos
Replicação do DNA/genética , DNA/química , Complexos Multienzimáticos/química , Tiorredoxinas/química , Bacteriófago T7/química , Bacteriófago T7/genética , Bacteriófago T7/ultraestrutura , Microscopia Crioeletrônica , DNA/biossíntese , DNA/genética , DNA/ultraestrutura , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/ultraestrutura , Domínios Proteicos , Tiorredoxinas/genética , Tiorredoxinas/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 111(11): 4073-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591606

RESUMO

Replication of DNA plays a central role in transmitting hereditary information from cell to cell. To achieve reliable DNA replication, multiple proteins form a stable complex, known as the replisome, enabling them to act together in a highly coordinated fashion. Over the past decade, the roles of the various proteins within the replisome have been determined. Although many of their interactions have been characterized, it remains poorly understood how replication proteins enter and leave the replisome. In this study, we visualize fluorescently labeled bacteriophage T7 DNA polymerases within the replisome while we simultaneously observe the kinetics of the replication process. This combination of observables allows us to monitor both the activity and dynamics of individual polymerases during coordinated leading- and lagging-strand synthesis. Our data suggest that lagging-strand polymerases are exchanged at a frequency similar to that of Okazaki fragment synthesis and that two or more polymerases are present in the replisome during DNA replication. Our studies imply a highly dynamic picture of the replisome with lagging-strand DNA polymerases residing at the fork for the synthesis of only a few Okazaki fragments. Further, new lagging-strand polymerases are readily recruited from a pool of polymerases that are proximally bound to the replisome and continuously replenished from solution.


Assuntos
Bacteriófago T7/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multiproteicos/metabolismo , DNA/metabolismo , Fluorescência , Ligação Proteica , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 109(24): 9408-13, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645372

RESUMO

The lagging-strand DNA polymerase requires an oligoribonucleotide, synthesized by DNA primase, to initiate the synthesis of an Okazaki fragment. In the replication system of bacteriophage T7 both DNA primase and DNA helicase activities are contained within a single protein, the bifunctional gene 4 protein (gp4). Intermolecular interactions between gp4 and T7 DNA polymerase are crucial for the stabilization of the oligoribonucleotide, its transfer to the polymerase, and its extension by DNA polymerase. We have identified conditions necessary to assemble the T7 priming complex and characterized its biophysical properties using fluorescence anisotropy. In order to reveal molecular interactions that occur during delivery of the oligoribonucleotide to DNA polymerase, we have used four genetically altered gp4 to demonstrate that both the RNA polymerase and the zinc-finger domains of DNA primase are involved in the stabilization of the priming complex and in sequence recognition in the DNA template. We find that the helicase domain of gp4 contributes to the stability of the complex by binding to the ssDNA template. The C-terminal tail of gp4 is not required for complex formation.


Assuntos
Bacteriófago T7/metabolismo , DNA Primase/metabolismo , Bacteriófago T7/química , Citosina/metabolismo , DNA Helicases/metabolismo , Polarização de Fluorescência
8.
Proc Natl Acad Sci U S A ; 108(9): 3584-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245349

RESUMO

A complete understanding of the molecular mechanisms underlying the functioning of large, multiprotein complexes requires experimental tools capable of simultaneously visualizing molecular architecture and enzymatic activity in real time. We developed a novel single-molecule assay that combines the flow-stretching of individual DNA molecules to measure the activity of the DNA-replication machinery with the visualization of fluorescently labeled DNA polymerases at the replication fork. By correlating polymerase stoichiometry with DNA synthesis of T7 bacteriophage replisomes, we are able to quantitatively describe the mechanism of polymerase exchange. We find that even at relatively modest polymerase concentration (∼2 nM), soluble polymerases are recruited to an actively synthesizing replisome, dramatically increasing local polymerase concentration. These excess polymerases remain passively associated with the replisome through electrostatic interactions with the T7 helicase for ∼50 s until a stochastic and transient dissociation of the synthesizing polymerase from the primer-template allows for a polymerase exchange event to occur.


Assuntos
Bacteriófago T7/enzimologia , Bioquímica/métodos , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Bacteriófago T7/metabolismo , Replicação do DNA , Cinética , Proteínas Mutantes/metabolismo , Ligação Proteica , Soluções , Proteínas Virais/metabolismo
9.
Nat Commun ; 15(1): 3791, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710704

RESUMO

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Caspase 8 , Proteína de Domínio de Morte Associada a Fas , Humanos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/química , Caspase 8/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Células HEK293 , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais
10.
J Biol Chem ; 287(41): 34273-87, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22887996

RESUMO

Bacteriophage T7 expresses two forms of gene 4 protein (gp4). The 63-kDa full-length gp4 contains both the helicase and primase domains. T7 phage also express a 56-kDa truncated gp4 lacking the zinc binding domain of the primase; the protein has helicase activity but no DNA-dependent primase activity. Although T7 phage grow better when both forms are present, the role of the 56-kDa gp4 is unknown. The two molecular weight forms oligomerize by virtue of the helicase domain to form heterohexamers. The 56-kDa gp4 and any mixture of 56- and 63-kDa gp4 show higher helicase activity in DNA unwinding and strand-displacement DNA synthesis than that observed for the 63-kDa gp4. However, single-molecule measurements show that heterohexamers have helicase activity similar to the 63-kDa gp4 hexamers. In oligomerization assays the 56-kDa gp4 and any mixture of the 56- and 63-kDa gp4 oligomerize to form more hexamers than does the 63-kDa gp4. The zinc binding domain of the 63-kDa gp4 interferes with hexamer formation, an inhibition that is relieved by the insertion of the 56-kDa species. Compared with the 63-kDa gp4, heterohexamers synthesize a reduced amount of oligoribonucleotides, mediated predominately by the 63-kDa subunits via a cis mode. During coordinated DNA synthesis 7% of the tetraribonucleotides synthesized are used as primers by both heterohexamers and hexamers of the 63-kDa gp4. Overall, an equimolar mixture of the two forms of gp4 shows the highest rate of DNA synthesis during coordinated DNA synthesis.


Assuntos
Bacteriófago T7/enzimologia , DNA Helicases/metabolismo , DNA Primase/metabolismo , Replicação do DNA/fisiologia , DNA Viral/biossíntese , Multimerização Proteica/fisiologia , Bacteriófago T7/genética , DNA Helicases/genética , DNA Primase/genética , DNA Viral/genética , Estrutura Terciária de Proteína
11.
J Biol Chem ; 287(46): 39050-60, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22977246

RESUMO

Synthesis of the leading DNA strand requires the coordinated activity of DNA polymerase and DNA helicase, whereas synthesis of the lagging strand involves interactions of these proteins with DNA primase. We present the first structural model of a bacteriophage T7 DNA helicase-DNA polymerase complex using a combination of small angle x-ray scattering, single-molecule, and biochemical methods. We propose that the protein-protein interface stabilizing the leading strand synthesis involves two distinct interactions: a stable binding of the helicase to the palm domain of the polymerase and an electrostatic binding of the carboxyl-terminal tail of the helicase to a basic patch on the polymerase. DNA primase facilitates binding of DNA helicase to ssDNA and contributes to formation of the DNA helicase-DNA polymerase complex by stabilizing DNA helicase.


Assuntos
Bacteriófago T7/genética , DNA Helicases/química , DNA Polimerase Dirigida por DNA/química , Replicação Viral , Catálise , Replicação do DNA , DNA de Cadeia Simples/genética , Cinética , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície , Ultracentrifugação , Proteínas Virais/química , Raios X
12.
J Biol Chem ; 287(35): 29468-78, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22761426

RESUMO

Gene 1.7 protein is the only known nucleotide kinase encoded by bacteriophage T7. The enzyme phosphorylates dTMP and dGMP to dTDP and dGDP, respectively, in the presence of a phosphate donor. The phosphate donors are dTTP, dGTP, and ribo-GTP as well as the thymidine and guanosine triphosphate analogs ddTTP, ddGTP, and dITP. The nucleotide kinase is found in solution as a 256-kDa complex consisting of ~12 monomers of the gene 1.7 protein. The two molecular weight forms co-purify as a complex, but each form has nearly identical kinase activity. Although gene 1.7 protein does not require a metal ion for its kinase activity, the presence of Mg(2+) in the reaction mixture results in either inhibition or stimulation of the rate of kinase reactions depending on the substrates used. Both the dTMP and dGMP kinase reactions are reversible. Neither dTDP nor dGDP is a phosphate acceptor of nucleoside triphosphate donors. Gene 1.7 protein exhibits two different equilibrium patterns toward deoxyguanosine and thymidine substrates. The K(m) of 4.4 × 10(-4) M obtained with dTTP for dTMP kinase is ~3-fold higher than that obtained with dGTP for dGMP kinase (1.3 × 10(-4) M), indicating that a higher concentration of dTTP is required to saturate the enzyme. Inhibition studies indicate a competitive relationship between dGDP and both dGTP, dGMP, whereas dTDP appears to have a mixed type of inhibition of dTMP kinase. Studies suggest two functions of dTTP, as a phosphate donor and a positive effector of the dTMP kinase reaction.


Assuntos
Bacteriófago T7/enzimologia , Desoxirribonucleotídeos/química , Magnésio/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas Virais/química , Desoxirribonucleotídeos/metabolismo , Magnésio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato/fisiologia , Proteínas Virais/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(34): 15033-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696935

RESUMO

Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.


Assuntos
Bacteriófago T7/enzimologia , DNA Polimerase Dirigida por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Tiorredoxinas/química , Regulação Alostérica , Sítio Alostérico , Bacteriófago T7/genética , Sequência de Bases , Sítios de Ligação , Primers do DNA/genética , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Tiorredoxinas/metabolismo , Difração de Raios X
14.
Sci Rep ; 13(1): 17825, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857770

RESUMO

Laminins (Lm) are major components of basement membranes (BM), which polymerize to form a planar lattice on cell surface. Genetic alternations of Lm affect their oligomerization patterns and lead to failures in BM assembly manifesting in a group of human disorders collectively defined as Lm N-terminal domain lamininopathies (LN-lamininopathies). We have employed a recently determined cryo-EM structure of the Lm polymer node, the basic repeating unit of the Lm lattice, along with structure prediction and modeling to systematically analyze structures of twenty-three pathogenic Lm polymer nodes implicated in human disease. Our analysis provides the detailed mechanistic explanation how Lm mutations lead to failures in Lm polymerization underlining LN-lamininopathies. We propose the new categorization scheme of LN-lamininopathies based on the insight gained from the structural analysis. Our results can help to facilitate rational drug design aiming in the treatment of Lm deficiencies.


Assuntos
Inteligência Artificial , Laminina , Humanos , Microscopia Crioeletrônica , Laminina/metabolismo , Membrana Basal/metabolismo , Polímeros/metabolismo
15.
Micromachines (Basel) ; 14(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37763837

RESUMO

Single particle cryo-electron microscopy (cryo-EM) has emerged as the prevailing method for near-atomic structure determination, shedding light on the important molecular mechanisms of biological macromolecules. However, the inherent dynamics and structural variability of biological complexes coupled with the large number of experimental images generated by a cryo-EM experiment make data processing nontrivial. In particular, ab initio reconstruction and atomic model building remain major bottlenecks that demand substantial computational resources and manual intervention. Approaches utilizing recent innovations in artificial intelligence (AI) technology, particularly deep learning, have the potential to overcome the limitations that cannot be adequately addressed by traditional image processing approaches. Here, we review newly proposed AI-based methods for ab initio volume generation, heterogeneous 3D reconstruction, and atomic model building. We highlight the advancements made by the implementation of AI methods, as well as discuss remaining limitations and areas for future development.

16.
Nat Commun ; 14(1): 317, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658135

RESUMO

Laminin polymerization is the major step in basement membranes assembly. Its failures cause laminin N-terminal domain lamininopathies including Pierson syndrome. We have employed cryo-electron microscopy to determine a 3.7 Å structure of the trimeric laminin polymer node containing α1, ß1 and γ1 subunits. The structure reveals the molecular basis of calcium-dependent formation of laminin lattice, and provides insights into polymerization defects manifesting in human disease.


Assuntos
Síndrome Nefrótica , Distúrbios Pupilares , Humanos , Laminina/química , Microscopia Crioeletrônica , Polimerização , Membrana Basal/química
17.
J Biol Chem ; 286(39): 34468-78, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21840995

RESUMO

The DNA helicase encoded by gene 4 of bacteriophage T7 assembles on single-stranded DNA as a hexamer of six identical subunits with the DNA passing through the center of the toroid. The helicase couples the hydrolysis of dTTP to unidirectional translocation on single-stranded DNA and the unwinding of duplex DNA. Phe(523), positioned in a ß-hairpin loop at the subunit interface, plays a key role in coupling the hydrolysis of dTTP to DNA unwinding. Replacement of Phe(523) with alanine or valine abolishes the ability of the helicase to unwind DNA or allow T7 polymerase to mediate strand-displacement synthesis on duplex DNA. In vivo complementation studies reveal a requirement for a hydrophobic residue with long side chains at this position. In a crystal structure of T7 helicase, when a nucleotide is bound at a subunit interface, Phe(523) is buried within the interface. However, in the unbound state, it is more exposed on the outer surface of the helicase. This structural difference suggests that the ß-hairpin bearing the Phe(523) may undergo a conformational change during nucleotide hydrolysis. We postulate that upon hydrolysis of dTTP, Phe(523) moves from within the subunit interface to a more exposed position where it contacts the displaced complementary strand and facilitates unwinding.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/química , DNA Viral/química , Nucleotídeos de Timina/química , Proteínas Virais/química , Cristalografia por Raios X , DNA Primase/metabolismo , DNA Viral/biossíntese , Escherichia coli/enzimologia , Escherichia coli/virologia , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Nucleotídeos de Timina/metabolismo , Proteínas Virais/metabolismo
18.
J Biol Chem ; 286(33): 29146-29157, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21697085

RESUMO

DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP(i)). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP(i), a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP(i) complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn(2+), larger than Mg(2+), fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.


Assuntos
Bacteriófago T7/enzimologia , DNA Polimerase Dirigida por DNA/química , Difosfatos/química , Manganês/química , Domínio Catalítico , Vanadatos/química
19.
J Vis Exp ; (179)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35104261

RESUMO

Recent advances in both instrumentation and image processing software have made single-particle cryo-electron microscopy (cryo-EM) the preferred method for structural biologists to determine high-resolution structures of a wide variety of macromolecules. Multiple software suites are available to new and expert users for image processing and structure calculation, which streamline the same basic workflow: movies acquired by the microscope detectors undergo correction for beam-induced motion and contrast transfer function (CTF) estimation. Next, particle images are selected and extracted from averaged movie frames for iterative 2D and 3D classification, followed by 3D reconstruction, refinement, and validation. Because various software packages employ different algorithms and require varying levels of expertise to operate, the 3D maps they generate often differ in quality and resolution. Thus, users regularly transfer data between a variety of programs for optimal results. This paper provides a guide for users to navigate a workflow across the popular software packages: cryoSPARC v3, RELION-3, and Scipion 3 to obtain a near-atomic resolution structure of the adeno-associated virus (AAV). We first detail an image processing pipeline with cryoSPARC v3, as its efficient algorithms and easy-to-use GUI allow users to quickly arrive at a 3D map. In the next step, we use PyEM and in-house scripts to convert and transfer particle coordinates from the best quality 3D reconstruction obtained in cryoSPARC v3 to RELION-3 and Scipion 3 and recalculate 3D maps. Finally, we outline steps for further refinement and validation of the resultant structures by integrating algorithms from RELION-3 and Scipion 3. In this article, we describe how to effectively utilize three processing platforms to create a single and robust workflow applicable to a variety of data sets for high-resolution structure determination.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Fluxo de Trabalho
20.
Micromachines (Basel) ; 14(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36677177

RESUMO

Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA