Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(18): 4926-4945.e22, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986619

RESUMO

Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.


Assuntos
Ependimoma , Ependimoma/genética , Humanos , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/patologia , Genoma Humano , Lactente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Masculino , Feminino
2.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32445698

RESUMO

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Assuntos
Ependimoma/genética , Ependimoma/metabolismo , Epigenoma/genética , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Proliferação de Células/genética , Metilação de DNA/genética , Epigenômica/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Lactente , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética
3.
Cell ; 158(2): 288-299, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036629

RESUMO

The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating ß-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Carboidratos da Dieta/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Butiratos/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Pólipos do Colo/metabolismo , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Reparo de Erro de Pareamento de DNA , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/metabolismo , Organismos Livres de Patógenos Específicos , beta Catenina/metabolismo
4.
Nature ; 609(7929): 1021-1028, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131014

RESUMO

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Assuntos
Diferenciação Celular , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Diferenciação Celular/genética , Linhagem da Célula , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Cerebelo/patologia , Subunidades alfa de Fatores de Ligação ao Core/genética , Proteínas Hedgehog/metabolismo , Histona Desmetilases , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/patologia , Metencéfalo/embriologia , Metencéfalo/patologia , Proteínas Musculares , Mutação , Fatores de Transcrição Otx/deficiência , Fatores de Transcrição Otx/genética , Proteínas Repressoras , Proteínas com Domínio T/metabolismo , Fatores de Transcrição
5.
Nature ; 589(7843): 597-602, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361818

RESUMO

Isoprenoids are vital for all organisms, in which they maintain membrane stability and support core functions such as respiration1. IspH, an enzyme in the methyl erythritol phosphate pathway of isoprenoid synthesis, is essential for Gram-negative bacteria, mycobacteria and apicomplexans2,3. Its substrate, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), is not produced in metazoans, and in humans and other primates it activates cytotoxic Vγ9Vδ2 T cells at extremely low concentrations4-6. Here we describe a class of IspH inhibitors and refine their potency to nanomolar levels through structure-guided analogue design. After modification of these compounds into prodrugs for delivery into bacteria, we show that they kill clinical isolates of several multidrug-resistant bacteria-including those from the genera Acinetobacter, Pseudomonas, Klebsiella, Enterobacter, Vibrio, Shigella, Salmonella, Yersinia, Mycobacterium and Bacillus-yet are relatively non-toxic to mammalian cells. Proteomic analysis reveals that bacteria treated with these prodrugs resemble those after conditional IspH knockdown. Notably, these prodrugs also induce the expansion and activation of human Vγ9Vδ2 T cells in a humanized mouse model of bacterial infection. The prodrugs we describe here synergize the direct killing of bacteria with a simultaneous rapid immune response by cytotoxic γδ T cells, which may limit the increase of antibiotic-resistant bacterial populations.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Meia-Vida , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxirredutases/deficiência , Oxirredutases/genética , Oxirredutases/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Especificidade por Substrato , Suínos/sangue , Linfócitos T Citotóxicos/imunologia
6.
Hum Mol Genet ; 33(11): 1015-1019, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38538568

RESUMO

The Northeastern region of India is considered a gateway for modern humans' dispersal throughout Asia. This region is a mixture of various ethnic and indigenous populations amalgamating multiple ancestries. One reason for such amalgamation is that, South Asia experienced multiple historic migrations from various parts of the world. A few examples explored genetically are Jews, Parsis and Siddis. Ahom is a dynasty that historically migrated to India during the 12th century. However, this putative migration has not been studied genetically at high resolution. Therefore, to validate this historical evidence, we genotyped autosomal data of the Modern Ahom population residing in seven sister states of India. Principal Component and Admixture analyses haave suggested a substantial admixture of the Ahom population with the local Tibeto-Burman populations. Moreover, the haplotype-based analysis has linked these Ahom individuals mainly with the Kusunda (a language isolated from Nepal) and Khasi (an Austroasiatic population of Meghalaya). Such unexpected presence of widespread population affinities suggests that Ahom mixed and assimilated a wide variety of Trans-Himalayan populations inhabiting this region after the migration. In summary, we observed a significant deviation of Ahom from their ancestral homeland (Thailand) and extensive admixture and assimilation with the local South Asian populations.


Assuntos
Etnicidade , Genética Populacional , Haplótipos , Migração Humana , Humanos , Povo Asiático/genética , Etnicidade/genética , Índia/etnologia , Tailândia/etnologia , Migrantes
7.
Circulation ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308371

RESUMO

BACKGROUND: An interatrial shunt may provide an autoregulatory mechanism to decrease left atrial pressure and improve heart failure (HF) symptoms and prognosis. METHODS: Patients with symptomatic HF with any left ventricular ejection fraction (LVEF) were randomized 1:1 to transcatheter shunt implantation versus a placebo procedure, stratified by reduced (≤40%) versus preserved (>40%) LVEF. The primary safety outcome was a composite of device-related or procedure-related major adverse cardiovascular or neurological events at 30 days compared with a prespecified performance goal of 11%. The primary effectiveness outcome was the hierarchical composite ranking of all-cause death, cardiac transplantation or left ventricular assist device implantation, HF hospitalization, outpatient worsening HF events, and change in quality of life from baseline measured by the Kansas City Cardiomyopathy Questionnaire overall summary score through maximum 2-year follow-up, assessed when the last enrolled patient reached 1-year follow-up, expressed as the win ratio. Prespecified hypothesis-generating analyses were performed on patients with reduced and preserved LVEF. RESULTS: Between October 24, 2018, and October 19, 2022, 508 patients were randomized at 94 sites in 11 countries to interatrial shunt treatment (n=250) or a placebo procedure (n=258). Median (25th and 75th percentiles) age was 73.0 years (66.0, 79.0), and 189 patients (37.2%) were women. Median LVEF was reduced (≤40%) in 206 patients (40.6%) and preserved (>40%) in 302 patients (59.4%). No primary safety events occurred after shunt implantation (upper 97.5% confidence limit, 1.5%; P<0.0001). There was no difference in the 2-year primary effectiveness outcome between the shunt and placebo procedure groups (win ratio, 0.86 [95% CI, 0.61-1.22]; P=0.20). However, patients with reduced LVEF had fewer adverse cardiovascular events with shunt treatment versus placebo (annualized rate 49.0% versus 88.6%; relative risk, 0.55 [95% CI, 0.42-0.73]; P<0.0001), whereas patients with preserved LVEF had more cardiovascular events with shunt treatment (annualized rate 60.2% versus 35.9%; relative risk, 1.68 [95% CI, 1.29-2.19]; P=0.0001; Pinteraction<0.0001). There were no between-group differences in change in Kansas City Cardiomyopathy Questionnaire overall summary score during follow-up in all patients or in those with reduced or preserved LVEF. CONCLUSIONS: Transcatheter interatrial shunt implantation was safe but did not improve outcomes in patients with HF. However, the results from a prespecified exploratory analysis in stratified randomized groups suggest that shunt implantation is beneficial in patients with reduced LVEF and harmful in patients with preserved LVEF. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03499236.

8.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092913

RESUMO

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Assuntos
Eritrócitos , Ácido N-Acetilneuramínico , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Animais , Ácido N-Acetilneuramínico/metabolismo , Humanos , Plasmodium yoelii/metabolismo , Camundongos , Proteína HN/metabolismo , Malária/parasitologia , Malária/metabolismo
9.
EMBO Rep ; 24(5): e55373, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943011

RESUMO

Upon ex vivo culture, hematopoietic stem cells (HSCs) quickly lose potential and differentiate into progenitors. The identification of culture conditions that maintain the potential of HSCs ex vivo is therefore of high clinical interest. Here, we demonstrate that the potential of murine and human HSCs is maintained when cultivated for 2 days ex vivo at a pH of 6.9, in contrast to cultivation at the commonly used pH of 7.4. When cultivated at a pH of 6.9, HSCs remain smaller, less metabolically active, less proliferative and show enhanced reconstitution ability upon transplantation compared to HSC cultivated at pH 7.4. HSCs kept at pH 6.9 show an attenuated polyamine pathway. Pharmacological inhibition of the polyamine pathway in HSCs cultivated at pH 7.4 with DFMO mimics phenotypes and potential of HSCs cultivated at pH 6.9. Ex vivo exposure to a pH of 6.9 is therefore a positive regulator of HSC function by reducing polyamines. These findings might improve HSC short-term cultivation protocols for transplantation and gene therapy interventions.


Assuntos
Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Concentração de Íons de Hidrogênio
10.
Nature ; 574(7780): 712-716, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597163

RESUMO

Cancers are caused by genomic alterations known as drivers. Hundreds of drivers in coding genes are known but, to date, only a handful of noncoding drivers have been discovered-despite intensive searching1,2. Attention has recently shifted to the role of altered RNA splicing in cancer; driver mutations that lead to transcriptome-wide aberrant splicing have been identified in multiple types of cancer, although these mutations have only been found in protein-coding splicing factors such as splicing factor 3b subunit 1 (SF3B1)3-6. By contrast, cancer-related alterations in the noncoding component of the spliceosome-a series of small nuclear RNAs (snRNAs)-have barely been studied, owing to the combined challenges of characterizing noncoding cancer drivers and the repetitive nature of snRNA genes1,7,8. Here we report a highly recurrent A>C somatic mutation at the third base of U1 snRNA in several types of tumour. The primary function of U1 snRNA is to recognize the 5' splice site via base-pairing. This mutation changes the preferential A-U base-pairing between U1 snRNA and the 5' splice site to C-G base-pairing, and thus creates novel splice junctions and alters the splicing pattern of multiple genes-including known drivers of cancer. Clinically, the A>C mutation is associated with heavy alcohol use in patients with hepatocellular carcinoma, and with the aggressive subtype of chronic lymphocytic leukaemia with unmutated immunoglobulin heavy-chain variable regions. The mutation in U1 snRNA also independently confers an adverse prognosis to patients with chronic lymphocytic leukaemia. Our study demonstrates a noncoding driver in spliceosomal RNAs, reveals a mechanism of aberrant splicing in cancer and may represent a new target for treatment. Our findings also suggest that driver discovery should be extended to a wider range of genomic regions.


Assuntos
Mutação , Neoplasias/genética , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Humanos , Neoplasias/patologia , Neoplasias/fisiopatologia , Sítios de Splice de RNA , Splicing de RNA , Fatores de Processamento de RNA/genética
11.
Nature ; 572(7767): 67-73, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31043743

RESUMO

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Evolução Molecular , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Transcrição Gênica , Animais , Neoplasias Cerebelares/classificação , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/metabolismo , Criança , Feminino , Feto/citologia , Glioma/classificação , Glioma/genética , Glioma/patologia , Humanos , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Tempo , Transcriptoma/genética
12.
Nature ; 574(7780): 707-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31664194

RESUMO

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Assuntos
Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , RNA Nuclear Pequeno/genética , Adolescente , Adulto , Processamento Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutação , Sítios de Splice de RNA , Splicing de RNA
13.
Proc Natl Acad Sci U S A ; 119(22): e2117675119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613056

RESUMO

Fibrin is the fibrous protein network that comprises blood clots; it is uniquely capable of bearing very large tensile strains (up to 200%) due to multiscale force accommodation mechanisms. Fibrin is also a biochemical scaffold for numerous enzymes and blood factors. The biomechanics and biochemistry of fibrin have been independently studied. However, comparatively little is known about how fibrin biomechanics and biochemistry are coupled: how does fibrin deformation influence its biochemistry? In this study, we show that mechanically induced protein structural changes in fibrin affect fibrin biochemistry. We find that tensile deformation of fibrin leads to molecular structural transitions of α-helices to ß-sheets, which reduced binding of tissue plasminogen activator (tPA), an enzyme that initiates fibrin lysis. Moreover, binding of tPA and Thioflavin T, a commonly used ß-sheet marker, were mutually exclusive, further demonstrating the mechano-chemical control of fibrin biochemistry. Finally, we demonstrate that structural changes in fibrin suppressed the biological activity of platelets on mechanically strained fibrin due to reduced αIIbß3 integrin binding. Our work shows that mechanical strain regulates fibrin molecular structure and biological activity in an elegant mechano-chemical feedback loop, which possibly extends to other fibrous biopolymers.


Assuntos
Fibrina , Estresse Mecânico , Resistência à Tração , Benzotiazóis/química , Fibrina/química , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ativador de Plasminogênio Tecidual/química
14.
Eur Heart J ; 45(3): 181-194, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37634192

RESUMO

BACKGROUND AND AIMS: Coronary flow capacity (CFC) is associated with an observed 10-year survival probability for individual patients before and after actual revascularization for comparison to virtual hypothetical ideal complete revascularization. METHODS: Stress myocardial perfusion (mL/min/g) and coronary flow reserve (CFR) per pixel were quantified in 6979 coronary artery disease (CAD) subjects using Rb-82 positron emission tomography (PET) for CFC maps of artery-specific size-severity abnormalities expressed as percent left ventricle with prospective follow-up to define survival probability per-decade as fraction of 1.0. RESULTS: Severely reduced CFC in 6979 subjects predicted low survival probability that improved by 42% after revascularization compared with no revascularization for comparable severity (P = .0015). For 283 pre-and-post-procedure PET pairs, severely reduced regional CFC-associated survival probability improved heterogeneously after revascularization (P < .001), more so after bypass surgery than percutaneous coronary interventions (P < .001) but normalized in only 5.7%; non-severe baseline CFC or survival probability did not improve compared with severe CFC (P = .00001). Observed CFC-associated survival probability after actual revascularization was lower than virtual ideal hypothetical complete post-revascularization survival probability due to residual CAD or failed revascularization (P < .001) unrelated to gender or microvascular dysfunction. Severely reduced CFC in 2552 post-revascularization subjects associated with low survival probability also improved after repeat revascularization compared with no repeat procedures (P = .025). CONCLUSIONS: Severely reduced CFC and associated observed survival probability improved after first and repeat revascularization compared with no revascularization for comparable CFC severity. Non-severe CFC showed no benefit. Discordance between observed actual and virtual hypothetical post-revascularization survival probability revealed residual CAD or failed revascularization.


Assuntos
Doença da Artéria Coronariana , Humanos , Radioisótopos de Rubídio , Estudos Prospectivos , Tomografia por Emissão de Pósitrons/métodos , Angiografia Coronária/métodos
15.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376490

RESUMO

Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.


Assuntos
Vírus da Doença de Newcastle , Sirtuínas , Animais , NAD , Vírus da Doença de Newcastle/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuínas/genética , Galinhas , Linhagem Celular
16.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39207120

RESUMO

The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.


Assuntos
Aminoaciltransferases , Vírus da Doença de Newcastle , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Proteólise , Animais , Embrião de Galinha , Cricetinae , Humanos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Arginina/metabolismo , Linhagem Celular , Proteína HN/metabolismo , Proteína HN/genética , Interações Hospedeiro-Patógeno , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo
17.
Mol Genet Genomics ; 299(1): 8, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374307

RESUMO

Lakshadweep is an archipelago of 36 islands located in the Southeastern Arabian Sea. In the absence of a detailed archaeological record, the human settlement timing of this island is vague. Previous genetic studies on haploid DNA makers suggested sex-biased ancestry linked to North and South Indian populations. Maternal ancestry suggested a closer link with the Southern Indian, while paternal ancestry advocated the Northern Indian genetic affinity. Since the haploid markers are more sensitive to genetic drift, which is evident for the Island populations, we have used the biparental high-resolution single-nucleotide polymorphic markers to reconstruct the population history of Lakshadweep Islands.  Using the fine-scaled analyses, we specifically focused on (A) the ancestry components of Lakshadweep Islands populations; (B) their relation with East, West Eurasia and South Asia; (C) the number of founding lineages and (D) the putative migration from Northern India as the paternal ancestry was closer to the North Indian populations. Our analysis of ancestry components confirmed relatively higher North Indian ancestry among the Lakshadweep population. These populations are closely related to the South Asian populations. We identified mainly a single founding population for these Islands, geographically divided into two sub-clusters. By examining the population's genetic composition and analysing the gene flow from different source populations, this study contributes to our understanding of Lakshadweep Island's evolutionary history and population dynamics. These findings shed light on the complex interactions between ethnic groups and their genetic contributions in making the Lakshadweep population.


Assuntos
Etnicidade , Genética Populacional , Humanos , Etnicidade/genética , Povo Asiático/genética , Índia , Evolução Biológica
18.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840117

RESUMO

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

19.
Crit Rev Biotechnol ; : 1-22, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142855

RESUMO

Even after the centenary celebration of insulin discovery, there prevail challenges concerning insulin aggregation, not only after repeated administration but also during industrial production, storage, transport, and delivery, significantly impacting protein quality, efficacy, and effectiveness. The aggregation reduces insulin bioavailability, increasing the risk of heightened immunogenicity, posing a threat to patient health, and creating a dent in the golden success story of insulin therapy. Insulin experiences various physicochemical and mechanical stresses due to modulations in pH, temperature, ionic strength, agitation, shear, and surface chemistry, during the upstream and downstream bioprocessing, resulting in insulin unfolding and subsequent fibrillation. This has fueled research in the pharmaceutical industry and academia to unveil the mechanistic insights of insulin aggregation in an attempt to devise rational strategies to regulate this unwanted phenomenon. The present review briefly describes the impacts of environmental factors of bioprocessing on the stability of insulin and correlates with various intermolecular interactions, particularly hydrophobic and electrostatic forces. The aggregation-prone regions of insulin are identified and interrelated with biophysical changes during stress conditions. The quest for novel additives, surface-active agents, and bioderived peptides in decelerating insulin aggregation, which results in overall structural stability, is described. We hope this review will help tackle the real-world challenges of insulin aggregation encountered during bioprocessing, ensuring safer, stable, and globally accessible insulin for efficient management of diabetes.

20.
Crit Rev Biotechnol ; 44(2): 218-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592989

RESUMO

The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.


Assuntos
Biocombustíveis , Lignina , Lignina/metabolismo , Açúcares , Tecnologia , Biomassa , Água , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA