Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Res ; 217: 114855, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427637

RESUMO

Recently, the exposure of pesticides/herbicides to the living organisms is increased especially due to agricultural malpractices and industrial processes. In particular, the exposure of pesticides/herbicides (e.g., atrazine) can impart several harsh effects on the human health. The development of efficient detection systems can be crucial in monitoring the atrazine in water and food/plant products, which can be decisive in controlling the deadly exposures of atrazine. Herein, we have developed electrochemical immunosensors for atrazine by employing monoclonal anti-atrazine antibody conjugated gold nanoparticles. Two types of gold nanoparticles (i.e., citrate and glutathione (GSH)-capped AuNPs) were used to modify gold working electrode and utilized for the development of atrazine immunosensors. The conjugation of immunoprobe on working electrode was especially designed to obtain stable and efficient sensing signals. The nanosensing immunoprobes fabricated using citrate-AuNPs and GSH-AuNPs exhibited comparable responses for a wide linear working range of 50 ng/L- 30 µg/L with limit of detection (LOD) values of 0.08 and 0.06 ng/L for atrazine, respectively.


Assuntos
Atrazina , Técnicas Biossensoriais , Herbicidas , Nanopartículas Metálicas , Praguicidas , Humanos , Ouro/química , Ácido Cítrico , Nanopartículas Metálicas/química , Imunoensaio , Citratos , Herbicidas/análise , Praguicidas/análise
2.
Environ Res ; 238(Pt 1): 117170, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722582

RESUMO

In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos de Cádmio , Metaloides , Metais Pesados , Nanoestruturas , Pontos Quânticos , Telúrio , Íons
3.
J Fluoresc ; 31(6): 1815-1821, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34519932

RESUMO

Lysozyme is widely used for the synthesis of nanomaterials (e.g., gold nanoparticle) to fluorescently sense metal ions. However, the effect of metal ions on the fluorescence of lysozyme is not studied yet. Herein, we have explored the interactions of lysozyme with different metal ions to develop a direct sensing platform for Fe(III). It has been observed that the fluorescence of lysozyme was slightly decreased in the presence of Cu(II), Hg(II), As(V), Co(II), Cd(II), Cr(II), Fe(II), Mn(II), Pb(II), and Zn(II), while a significant decrease in the lysozyme fluorescence was observed for Fe(III). The effect of thermal stability on the fluorescence quenching was also studied from 25 to 60 °C. In the present study, the lysozyme sensing probe was able to selectively and accurately detect 0.5-50 ppm of Fe(III) with a LOD of 0.1 ppm (1.8 µM) at 25 °C.


Assuntos
Compostos Férricos/análise , Fluorescência , Muramidase/química , Compostos Férricos/metabolismo , Muramidase/metabolismo , Temperatura
4.
Langmuir ; 36(41): 12319-12326, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32975416

RESUMO

Herein, we have developed citrate-, glutathione-, and ascorbate-functionalized gold nanoparticles (AuNPs) to examine their interactions with diverse heavy metal ions, such as Cd, Mn, Cr, Fe, Co, Pb, Hg, Zn, and Ti. These interactions are crucial in defining the final outcome of AuNP-based sensing/removal of heavy metals. We have evaluated these interactions by analyzing the variations in the color and spectroscopic signals of functionalized AuNPs. Additionally, the obtained results were also compared and validated with the computational studies. It has been observed that citrate-AuNPs and GSH-AuNPs displayed high selectivity toward Cr and Mn with Eforce values of -23.4 and -14.0 kJ/mol, respectively. Likewise, the ascorbate-AuNPs displayed sensitivity for multiple ions, for example, Cd, Fe, and Mn, with an Eforce value of -19.6 kJ/mol. A detailed analysis focusing on the electrostatic charges, ionic sizes, and interaction energy values has been provided to show specific interactions between functionalized AuNPs and heavy metal ions. The respective mechanisms of interaction between heavy metal ions and functionalized AuNPs have been explored with the help of experimental and computational outcomes.

5.
Environ Res ; 177: 108569, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31352301

RESUMO

The development of benign and efficient approaches for treating industrial grade toxic organic dyes is an ongoing challenge. To this end, copper oxide nanoparticles (CuO NPs) were prepared by a simple, environment friendly, and economical green synthesis procedure by using Psidium guajava leaf extract as reducing agent (i.e., for the reduction of metal salt) as well as capping agent and copper acetate monohydrate as metal salt. The formation of mono-dispersed and spherical (average size 2-6 nm with BET surface area 52.6 m2/g) CuO NPs was confirmed by various spectroscopic and microscopic techniques. The CuO NPs exhibited excellent degradation efficiency for the industrial dyes, i.e., Nile blue (NB) (93% removal in 120 min) and reactive yellow 160 (RY160) (81% removal in 120 min) with apparent rate constants of 0.023 and 0.014 min-1, respectively. The CuO catalyst was found to be reusable for photocatalytic dye degradation even after five consecutive cycles. The limit of detection (LOD) values for NB and RY160 were 4 and 9 mg/L, respectively. In light of their high reusability and photocatalytic efficiency along with adaptability to green synthesis, the use of biogenic CuO NPs is a promising option for the purification of water resources contaminated with industrial dye.


Assuntos
Corantes/química , Nanopartículas Metálicas/química , Cobre/química , Nanopartículas , Óxidos , Processos Fotoquímicos , Extratos Vegetais , Purificação da Água/métodos
6.
Environ Res ; 168: 336-356, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384228

RESUMO

The presence of odorants/volatiles in the air exerted various types of negative impacts on the surrounding environment. Their concentrations in indoor/outdoor air, if exceeding the threshold level, may not only affect human health but also deteriorate living standards. To maintain and enhance the quality of life, a better tool for the removal of these molecules is in great demand. Metal-organic frameworks (MOFs) and their associated materials offer an excellent platform for the treatment of odorants/volatiles in air (and water) systems. The diversity of ligands and metal ions in their frame imparts large loading capacities and excellent selectivity for a variety of targetable VOCs and/or odorants. This review discusses the use of MOFs and their composites to treat odorants/volatile molecules in gaseous media, with extensive discussion of their adsorptive uptakes, along with methods for their synthesis and regeneration. Moreover, the progression of odorant/volatile removal by MOFs is considered, with a special note on future directions in this emerging research field.


Assuntos
Poluentes Atmosféricos/análise , Estruturas Metalorgânicas , Odorantes/análise , Adsorção , Humanos , Metais , Qualidade de Vida
7.
J Environ Manage ; 225: 261-271, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096714

RESUMO

Nanotechnology is currently one of the highest priority research fields in many countries due to its immense potentiality and economic impact. Nanotechnology involves the research, development, production, and processing of structures and materials on a nanometer scale in various fields of science, technology, health care, industries, and agriculture. As such, it has contributed to the gradual restructuring of many associated technologies. However, due to the uncertainties and irregularities in shape, size, and chemical compositions, the presence of certain nanomaterials may exert adverse impacts on the environment as well as human health. Concerns have thus been raised about the destiny, transport, and transformation of nanoparticles released into the environment. A critical evaluation of the current states of knowledge regarding the exposure and effects of nanomaterials on the environment and human health is discussed in this review. Recognition on the potential advantages and unintended dangers of nanomaterials to the environment and human health is critically important to pursue their development in the future.


Assuntos
Meio Ambiente , Nanoestruturas , Nanotecnologia , Humanos , Indústrias , Nanopartículas
8.
J Environ Manage ; 213: 189-205, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499555

RESUMO

Bisphenol A (BPA) is known to be an emerging pollutant in various environmental compartments. Human exposure to BPA occurs widely because it is commonly used as the raw material in a variety of industrial processes (e.g., the preparation of epoxy and polycarbonate resins). In this review, a brief survey was carried out to cover a range of photocatalytic materials (e.g., titania, zinc, silver, carbon, and bismuth) and their modified forms as an effective means to treat water systems contaminated with BPA. The overall efficiency and limitations of these catalysts are described for the photocatalytic treatment of BPA.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Poluentes Químicos da Água/química , Catálise , Humanos , Processos Fotoquímicos , Água
9.
Biotechnol Adv ; 66: 108156, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084799

RESUMO

The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the aptasensing systems can be classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL aptasensors. Special attention has been paid to the fabrication processes, analytical reliability, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Poluentes Ambientais , Nanoestruturas , Reprodutibilidade dos Testes
10.
Sci Total Environ ; 863: 160923, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36543271

RESUMO

As an effective means to efficiently control the emissions of carbon dioxide (CO2), photo-conversion of CO2 into solar fuels (or their precursors) is meaningful both as an option to generate cleaner energy and to alleviate global warming. In this regard, bismuth oxyhalide (BiOX, where X = Cl, Br, and I) semiconductors have sparked considerable interest due to their multiple merits (e.g., visible light-harvesting, efficient charge carriers separation, and excellent chemical stability). In this review, the fundamental aspects of BiOX-based photocatalysts are discussed in relation to their modification strategies and associated reduction mechanisms of CO2 to help expand their applicabilities. In this context, their performance is also evaluated in terms of the key performance metrics (e.g., quantum efficiency (QE), space-time yield (STY), and figure of merit (FoM)). Accordingly, the morphology design of BiOX materials is turned out as one of the most efficient strategies for the maximum yield of CO while the introduction of heterojunctions into BiOX materials was more suitable for CH4 formation. As such, the adoption of the proper modification approach is recommended for efficient conversion of CO2.

11.
Environ Pollut ; 299: 118824, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016982

RESUMO

As non-biological molecules, molecular imprinted polymers (MIPs) can be made as antibody mimics for the development of luminescence sensors for various targets. The combination of MIPs with nanomaterials is further recognized as a useful option to improve the sensitivity of luminescence sensors. In this work, the recent progresses made in the fabrication of fluorescence, phosphorescence, chemiluminescence, and electrochemiluminescence sensors based on such combination have been reviewed with emphasis on the detection of pesticides/herbicides. Accordingly, the materials that are most feasible for the detection of such targets are recommended based on the MIP technologies.


Assuntos
Herbicidas , Impressão Molecular , Praguicidas , Luminescência , Praguicidas/análise , Polímeros , Água
12.
Biosens Bioelectron ; 193: 113617, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555756

RESUMO

As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Doenças Cardiovasculares , Nanoestruturas , Doenças Cardiovasculares/diagnóstico , Técnicas Eletroquímicas , Humanos
13.
Int J Nanomedicine ; 16: 383-402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488077

RESUMO

Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.


Assuntos
Testes Imediatos , Medicina de Precisão/métodos , Doenças Transmissíveis/diagnóstico , Humanos , Dispositivos Lab-On-A-Chip , Smartphone
14.
Environ Int ; 146: 106183, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33113463

RESUMO

Airborne pathogens are small microbes that can cause a multitude of diseases (e.g., the common cold, flu, asthma, anthrax, tuberculosis, botulism, and pneumonia). As pathogens are transmitted from infected hosts via a number of routes (e.g., aerosolization, sneezing, and coughing), there is a great demand to accurately monitor their presence and behavior. Despite such need, conventional detection methods (e.g., colony counting, immunoassays, and various molecular techniques) generally suffer from a number of demerits (e.g., complex, time-consuming, and labor-intensive nature). To help overcome such limitations, nanomaterial-based biosensors have evolved as alternative candidates to realize portable, rapid, facile, and direct on-site identification of target microbes. In this review, nano-biosensors developed for the detection of airborne pathogens are listed and discussed in reference to conventional options. The prospects for the development of advanced nano-biosensors with enhanced accuracy and portability are also discussed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Bactérias
15.
Biosens Bioelectron ; 165: 112382, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729507

RESUMO

The increasing level of pesticides and herbicides in food and water sources is a growing threat to human health and the environment. The development of portable, sensitive, specific, simple, and cost-effective sensors is hence in high demand to avoid exposure or consumption of these chemicals through efficient monitoring of their levels in food as well as water samples. The use of nanomaterials (NMs) for the construction of an immunosensing system was demonstrated to be an efficient and effective option to realize selective sensing against pesticides/herbicides. The potential of such applications has hence been demonstrated for a variety of NMs including graphene, carbon nanotubes (CNTs), metal nanoparticles, and nano-polymers either in pristine or composite forms based on diverse sensing principles (e.g., electrochemical, optical, and quartz crystal microbalance (QCM)). This article evaluates the development, applicability, and performances of NM-based immunosensors for the measurement of pesticides and herbicides in water, food, and soil samples. The performance of all the surveyed sensors has been evaluated on the basis of key parameters, e.g., detection limit (DL), sensing range, and response time.


Assuntos
Técnicas Biossensoriais , Herbicidas , Nanoestruturas , Nanotubos de Carbono , Praguicidas , Humanos , Imunoensaio , Praguicidas/análise
16.
J Hazard Mater ; 388: 121815, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831285

RESUMO

The presence of arsenic in the water system has been a universal problem over the past several decades. Inorganic arsenic ions mainly occur in two oxidation states, As(V) and As(III), in the natural environment. These two oxidation states of arsenic ions are ubiquitous in natural waters and pose significant health hazards to humans when present at or above the allowable limits. Therefore, treatment of arsenic ions has become more stringent based on various techniques (e.g., membrane filtration, adsorption, and ion exchange). This paper aims to review the current knowledge on various functional adsorbents through comparison of removal potential for As on the basis of key performance metrics, especially the partition coefficient (PC). As a whole, novel materials exhibited far better removal performance for As(V) and As(III) than conventional materials. Of the materials reviewed, the advanced sorbent like ZrO(OH)2/CNTs showcased superior performances such as partition coefficient values of 584.6 (As(V) and 143.8 mol kg-1 M-1 (As(III) with excellent regenerability (>90 % of desorption efficiency after three sorption cycles). The results of this review are expected to help researchers to establish a powerful strategy for abatement of arsenic ions in wastewater.

17.
Nanoscale Adv ; 2(9): 3764-3787, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132791

RESUMO

Gold nanoparticles (GNPs) have generated keen interest among researchers in recent years due to their excellent physicochemical properties. In general, GNPs are biocompatible, amenable to desired functionalization, non-corroding, and exhibit size and shape dependent optical and electronic properties. These excellent properties of GNPs exhibit their tremendous potential for use in diverse biomedical applications. Herein, we have evaluated the recent advancements of GNPs to highlight their exceptional potential in the biomedical field. Special focus has been given to emerging biomedical applications including bio-imaging, site specific drug/gene delivery, nano-sensing, diagnostics, photon induced therapeutics, and theranostics. We have also elaborated on the basics, presented a historical preview, and discussed the synthesis strategies, functionalization methods, stabilization techniques, and key properties of GNPs. Lastly, we have concluded this article with key findings and unaddressed challenges. Overall, this review is a complete package to understand the importance and achievements of GNPs in the biomedical field.

18.
Biosens Bioelectron ; 173: 112787, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33190049

RESUMO

The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.

19.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266270

RESUMO

Morphological characteristics of any nanomaterial are critical in defining its properties. In this context, a method to control morphological parameters of polyaniline (PANI) has been investigated by producing its composite with gold nanoparticles (AuNPs). Herein, we report for the first time the successful control on the physical/chemical properties of PANI composites synthesized via interfacial polymerization through functionalization of its AuNP composite component with citrate, ascorbate, glutathione (GSH), and cetyl trimethyl ammonium bromide (CTAB). A significant difference in the polymerization pattern, morphologies, and electrical properties was recognized in these composites according to the functionality of the modified AuNPs. The obtained composites of AuNPs/PANI exhibited highly diverse morphologies (e.g., nodule, hollow hemisphere, flake, and spider-web galaxy type) and electrical characteristics according to functionalization. Hence, this study is expected to offer better insight into control of the polymerization pattern of AuNP/PANI composites and their associated properties.

20.
Food Chem ; 303: 125375, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31476527

RESUMO

Urea is well-known to offer tremendous scope for sensing/diagnosing such as adulteration in dairy products or diseases in human body. This study was organized to describe and validate a new mediator-free, unsophisticated, and direct current voltage (IV)-based sensor for facile detection of urea using nanocomposites made of urease-immobilized graphene nanoplatelets and graphitized nanodiamonds. This nanocomposite displayed sensitive and direct signal in the form of current at 0 V without the need of any complex chemical reaction. This platform was highly sensitive (limit of detection of 5 µg/mL) far superior to the comparable systems introduced recently. The incorporation of graphitized nanodiamonds within the graphene nanoplatelets layers helped improve the sensitivity by a factor of three (up to 806.3 µA (mg mL-1)-1 cm-2) with 20 s response time. As such, the use of this nanocomposite was helpful in improving sensing performances with enhanced enzyme loading capacity.


Assuntos
Técnicas Eletroquímicas/métodos , Nanocompostos/química , Ureia/análise , Grafite/química , Nanodiamantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA