Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 201, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803395

RESUMO

BACKGROUND: Xylitol has a wide range of applications in the pharmaceuticals, cosmetic, food and beverage industry. Microbial xylitol production reduces the risk of contamination and is considered as environment friendly and sustainable compared to the chemical method. In this study, random mutagenesis and genetic engineering approaches were employed to develop Candida tropicalis strains with reduced xylitol dehydrogenase (XDH) activity to eliminate co-substrate requirement for corn cob-based xylitol-ethanol biorefinery. RESULTS: The results suggest that when pure xylose (10% w/v) was fermented in bioreactor, the Ethyl methane sulfonate (EMS) mutated strain (C. tropicalis K2M) showed 9.2% and XYL2 heterozygous (XYL2/xyl2Δ::FRT) strain (C. tropicalis K21D) showed 16% improvement in xylitol production compared to parental strain (C. tropicalis K2). Furthermore, 1.5-fold improvement (88.62 g/L to 132 g/L) in xylitol production was achieved by C. tropicalis K21D after Response Surface Methodology (RSM) and one factor at a time (OFAT) applied for media component optimization. Finally, corncob hydrolysate was tested for xylitol production in biorefinery mode, which leads to the production of 32.6 g/L xylitol from hemicellulosic fraction, 32.0 g/L ethanol from cellulosic fraction and 13.0 g/L animal feed. CONCLUSIONS: This work, for the first time, illustrates the potential of C. tropicalis K21D as a microbial cell factory for efficient production of xylitol and ethanol via an integrated biorefinery framework by utilising lignocellulosic biomass with minimum waste generation.


Assuntos
Candida tropicalis , Xilitol , Candida tropicalis/genética , Zea mays , Fermentação , Etanol , Hidrólise , Xilose
2.
Fungal Genet Biol ; 150: 103550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675986

RESUMO

The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
3.
Br J Cancer ; 122(1): 121-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819177

RESUMO

BACKGROUND: Protein kinase D1 (PKD1) is a serine-threonine kinase that regulates various functions within the cell. Herein, we report the significance of PKD1 expression in glucose metabolism resulting in pancreatic cancer (PanCa) progression and chemo-resistance. METHODS: PKD1 expression in PanCa was investigated by using immunohistochemistry. Functional and metabolic assays were utilised to analyse the effect of PKD1 expression/knockdown on associated cellular/molecular changes. RESULTS: PKD1 expression was detected in human pancreatic intraepithelial neoplasia lesions (MCS = 12.9; P < 0.0001) and pancreatic ductal adenocarcinoma samples (MCS = 15, P < 0.0001) as compared with faint or no expression in normal pancreatic tissues (MCS = 1.54; P < 0.0001). Our results determine that PKD1 enhances glucose metabolism in PanCa cells, by triggering enhanced tumorigenesis and chemo-resistance. We demonstrate that mTORC1 activation by PKD1 regulates metabolic alterations in PanCa cells. siRNA knockdown of Raptor or treatment with rapamycin inhibited PKD1-accelerated lactate production as well as glucose consumption in cells, which confirms the association of mTORC1 with PKD1-induced metabolic alterations. CONCLUSION: This study suggests a novel role of PKD1 as a key modulator of the glucose metabolism in PanCa cells accelerating tumorigenesis and chemo-resistance. The remodelling of PKD1-dysregulated glucose metabolism can be achieved by regulation of mTORC1 for development of novel therapeutic strategies.


Assuntos
Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite Crônica/metabolismo , Proteína Quinase C/metabolismo , Carcinogênese/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/patologia , Proteína Quinase C/genética , Transdução de Sinais/genética , Transfecção
4.
J Bioenerg Biomembr ; 52(5): 383-395, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808242

RESUMO

Pleiotropic drug resistance (PDR) plasma membrane transporters mediate xenobiotic efflux from the cells and thereby help pathogenic microorganisms to withstand antimicrobial therapies. Given that xenobiotic efflux is an energy-consuming process, cells with upregulated PDR can be sensitive to perturbations in cellular energetics. Protonophores dissipate proton gradient across the cellular membranes and thus increase ATP spendings to their maintenance. We hypothesised that chronic exposure of yeast cells to the protonophores can favour the selection of cells with inactive PDR. To test this, we measured growth rates of the wild type Saccharomyces cerevisiae and PDR-deficient Δpdr1Δpdr3 strains in the presence of protonophores carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), pentachlorophenol (PCP) and niclosamide (NCA). Although the protonophore-induced respiration rates of these two strains were similar, the PDR-deficient strain outperformed the control one in the growth rate on non-fermentable carbon source supplemented with low concentrations of FCCP. Thus, active PDR can be deleterious under conditions of partially uncoupled oxidative-phosphorylation. Furthermore, our results suggest that tested anionic protonophores are poor substrates of PDR-transporters. At the same time, protonophores imparted azole tolerance to yeasts, pointing that they are potent PDR inducers. Interestingly, protonophore PCP led to a persistent increase in the levels of a major ABC-transporter Pdr5p, while azole clotrimazole induced only a temporary increase. Together, our data provides an insight into the effects of the protonophores in the eukaryotes at the cellular level and support the idea that cells with activated PDR can be selected out upon conditions of energy limitations.


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
5.
FEMS Yeast Res ; 20(6)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32756963

RESUMO

The present study is an attempt to determine the lipid composition of Candida auris and to highlight if the changes in lipids can be correlated to high drug resistance encountered in C. auris. For this, the comparative lipidomics landscape between drug-susceptible (CBS10913T) and a resistant hospital isolate (NCCPF_470033) of C. auris was determined by employing high throughput mass spectrometry. All major groups of phosphoglycerides (PGL), sphingolipids, sterols, diacylglycerols (DAG) and triacylglycerols (TAG), were quantitated along with their molecular lipid species. Our analyses highlighted several key changes where the NCCPF_470033 showed an increase in PGL content, specifically phosphatidylcholine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, and phosphatidylethanolamine; odd chain containing lipids and accumulation of 16:1-DAG and 16:0-DAG; depletion of 18:1-TAG and 18:0-TAG. The landscape of molecular species displayed a distinct imprint between isolates. For example, the levels of unsaturated PGLs, contributed by both odd and even-chain fatty acyls were higher in resistant NCCPF_470033 isolate, resulting in a higher unsaturation index. Notwithstanding, several commonalities of lipid compositional changes between resistant C. auris and other Candida spp., the study could also identify distinguishable changes in specific lipid species in C. auris. Together, the data highlights the modulation of membrane lipid homeostasis associated with drug-resistant phenotype of C. auris.


Assuntos
Candida/química , Lipidômica , Lipídeos/química , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
6.
FEMS Yeast Res ; 20(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490522

RESUMO

Considering the relevance of drug transporters belonging to ABC and MFS superfamilies in pathogenic Candida species, there has always been a need to have an overexpression system where these membrane proteins for functional analysis could be expressed in a homologous background. We could address this unmet need by constructing a highly drug-susceptible Candida glabrata strain deleted in seven dominant ABC transporters genes such as CgSNQ2, CgAUS1, CgCDR1, CgPDH1, CgYCF1, CgYBT1 and CgYOR1 and introduced a GOF mutation in transcription factor (TF) CgPDR1 leading to a hyper-activation of CgCDR1 locus. The expression system was validated by overexpressing four GFP tagged ABC (CgCDR1, CgPDH1, CaCDR1 and ScPDR5) and an MFS (CgFLR1) transporters genes facilitated by an engineered expression plasmid to integrate at the CgCDR1 locus. The properly expressed and localized transporters were fully functional, as was revealed by their several-fold increased drug resistance, growth kinetics, localization studies and efflux activities. The present homologous system will facilitate in determining the role of an individual transporter for its substrate specificity, drug efflux, pathogenicity and virulence traits without the interference of other major transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Candida glabrata/crescimento & desenvolvimento , Candida glabrata/genética , Regulação Fúngica da Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/classificação , Antifúngicos/farmacologia , Transporte Biológico , Candida glabrata/efeitos dos fármacos , Candida glabrata/metabolismo , Deleção de Genes , Cinética , Mutação
7.
Nanomedicine ; 20: 102027, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170509

RESUMO

Pancreatic cancer (PanCa) is a major cause of cancer-related death due to limited therapeutic options. As pancreatic tumors are highly desmoplastic, they prevent appropriate uptake of therapeutic payloads. Thus, our objective is to develop a next-generation nanoparticle system for treating PanCa. We generated a multi-layered Pluronic F127 and polyvinyl alcohol stabilized and poly-L-lysine coated paclitaxel loaded poly(lactic-co-glycolic acid) nanoparticle formulation (PPNPs). This formulation exhibited optimal size (~160 nm) and negative Zeta potential (-6.02 mV), efficient lipid raft mediated internalization, pronounced inhibition in growth and metastasis in vitro, and in chemo-naïve and chemo-exposed orthotopic xenograft mouse models. Additionally, PPNPs altered nanomechanical properties of PanCa cells as suggested by the increased elastic modulus in nanoindentation analyses. Immunohistochemistry of orthotopic tumors demonstrated decreased expression of tumorigenic and metastasis associated proteins (ki67, vimentin and slug) in PPNPs treated mice. These results suggest that PPNPs represent a viable and robust platform for (PanCa).


Assuntos
Nanopartículas/química , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endocitose , Humanos , Microdomínios da Membrana/metabolismo , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioconjug Chem ; 29(5): 1500-1504, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29634254

RESUMO

Controlled conjugation of fluorescent carbon dots (CDs) with DNA and subsequent fabrication of the CDs into an array through hybridization mediated self-assembly in the solution phase is reported. Covalent conjugation of CD with DNA and the subsequent array formation change the mobility of the CD-DNA array in gel electrophoresis and HPLC significantly. Interspatial distance in the CD-DNA array is tuned by the DNA sequence length and maintained at ∼8 ± 0.3 nm as revealed by electron microscopy studies. An increase in fluorescence lifetime by ∼2 ns was observed for the CD-DNA array compared to a solitary CD, vis-á-vis better imaging prospects of HEK293 cells by the former. Thus, the array displays improved fluorescence and unhindered cell penetration.


Assuntos
Carbono/química , DNA/química , Corantes Fluorescentes/química , Análise de Sequência com Séries de Oligonucleotídeos , Imagem Óptica , Pontos Quânticos/química , Fluorescência , Células HEK293 , Humanos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Imagem Óptica/métodos
9.
Adv Colloid Interface Sci ; 323: 103065, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091690

RESUMO

Metallosurfactants offer important scientific and technological advances due to their novel interfacial properties. As a special class of structures formed by the integration of metal ions into amphiphilic surfactant molecules, these metal-based amphiphilic molecules possess both organometallic and surface chemistries. This review critically examines the structural transitions of metallosurfactants from micelle to vesicle upon metal coordination. The properties of a metallosurfactant can be changed by tuning the coordination between the metal ions and surfactants. The self-assembled behavior of surfactants can be controlled by selecting transition-metal ions that enhance their catalytic efficiency in environmental applications by applying a hydrogen evolution reaction or oxygen evolution reaction. We present the different scattering techniques available to examine the properties of metallosurfactants (e.g., size, shape, structure, and aggregation behavior). The utility of metallosurfactants in catalysis, the synthesis of nanoparticles, and biomedical applications (involving diagnostics and therapeutics) is also explored.

10.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768075

RESUMO

The undisturbed environment in Netarhat, with its high levels of accumulated lignocellulosic biomass, presents an opportunity to identify microbes for biomass digestion. This study focuses on the bioprospecting of native soil microbes from the Netarhat forest in Jharkhand, India, with the potential for lignocellulosic substrate digestion. These biocatalysts could help overcome the bottleneck of biomass saccharification and reduce the overall cost of biofuel production, replacing harmful fossil fuels. The study used metagenomic analysis of pine forest soil via whole genome shotgun sequencing, revealing that most of the reads matched with the bacterial species, very low percentage of reads (0.1%) belongs to fungal species, with 13% of unclassified reads. Actinobacteria were found to be predominant among the bacterial species. MetaErg annotation identified 11,830 protein family genes and 2 metabolic marker genes in the soil samples. Based on the Carbohydrate Active EnZyme (CAZy) database, 3,996 carbohydrate enzyme families were identified, with family Glycosyl hydrolase (GH) dominating with 1,704 genes. Most observed GH families in the study were GH0, 3, 5, 6. 9, 12. 13, 15, 16, 39, 43, 57, and 97. Modelling analysis of a representative GH 43 gene suggested a strong affinity for cellulose than xylan. This study highlights the lignocellulosic digestion potential of the native microfauna of the lesser-known pine forest of Netarhat.Communicated by Ramaswamy H. Sarma.

11.
ACS Omega ; 8(42): 38839-38848, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901538

RESUMO

Aberrant regulation of ß-catenin signaling is strongly linked with cancer proliferation, invasion, migration, and metastasis, thus, small molecules that can inhibit this pathway might have great clinical significance. Our molecular modeling studies suggest that ormeloxifene (ORM), a triphenylethylene molecule that docks with ß-catenin, and its brominated analogue (Br-ORM) bind more effectively with relatively less energy (-7.6 kcal/mol) to the active site of ß-catenin as compared to parent ORM. Herein, we report the synthesis and characterization of a Br-ORM by NMR and FTIR, as well as its anticancer activity in cervical cancer models. Br-ORM treatment effectively inhibited tumorigenic features (cell proliferation and colony-forming ability, etc.) and induced apoptotic death, as evident by pronounced PARP cleavage. Furthermore, Br-ORM treatment caused cell cycle arrest at the G1-S phase. Mechanistic investigation revealed that Br-ORM targets the key proteins involved in promoting epithelial-mesenchymal transition (EMT), as demonstrated by upregulation of E-cadherin and repression of N-cadherin, Vimentin, Snail, MMP-2, and MMP-9 expression. Br-ORM also represses the expression and nuclear subcellular localization of ß-catenin. Consequently, Br-ORM treatment effectively inhibited tumor growth in an orthotopic cervical cancer xenograft mouse model along with EMT associated changes as compared to vehicle control-treated mice. Altogether, experimental findings suggest that Br-ORM is a novel, promising ß-catenin inhibitor and therefore can be harnessed as a potent anticancer small molecule for cervical cancer treatment.

12.
J Fungi (Basel) ; 8(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887407

RESUMO

In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.

13.
mBio ; 13(1): e0354521, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038899

RESUMO

In this study, 18 predicted membrane-localized ABC transporters of Candida glabrata were deleted individually to create a minilibrary of knockouts (KO). The transporter KOs were analyzed for their susceptibility toward antimycotic drugs. Although CgYOR1 has previously been reported to be upregulated in various azole-resistant clinical isolates of C. glabrata, deletion of this gene did not change the susceptibility to any of the tested azoles. Additionally, Cgyor1Δ showed no change in susceptibility toward oligomycin, which is otherwise a well-known substrate of Yor1 in other yeasts. The role of CgYor1 in azole susceptibility only became evident when the major transporter CgCDR1 gene was deleted. However, under nitrogen-depleted conditions, Cgyor1Δ demonstrated an azole-susceptible phenotype, independent of CgCdr1. Notably, Cgyor1Δ cells also showed increased susceptibility to target of rapamycin (TOR) and calcineurin inhibitors. Moreover, increased phytoceramide levels in Cgyor1Δ and the deletions of regulators downstream of TOR and the calcineurin signaling cascade (Cgypk1Δ, Cgypk2Δ, Cgckb1Δ, and Cgckb2Δ) in the Cgyor1Δ background and their associated fluconazole (FLC) susceptibility phenotypes confirmed their involvement. Collectively, our findings show that TOR and calcineurin signaling govern CgYor1-mediated azole susceptibility in C. glabrata. IMPORTANCE The increasing incidence of Candida glabrata infections in the last 40 years is a serious concern worldwide. These infections are usually associated with intrinsic azole resistance and increasing echinocandin resistance. Efflux pumps, especially ABC transporter upregulation, are one of the prominent mechanisms of azole resistance; however, only a few of them are characterized. In this study, we analyzed the mechanisms of azole resistance due to a multidrug resistance-associated protein (MRP) subfamily ABC transporter, CgYor1. We demonstrate for the first time that CgYor1 does not transport oligomycin but is involved in azole resistance. Under normal growing conditions its function is masked by major transporter CgCdr1; however, under nitrogen-depleted conditions, it displays its azole resistance function independently. Moreover, we propose that the azole susceptibility due to removal of CgYor1 is not due to its transport function but involves modulation of TOR and calcineurin cascades.


Assuntos
Azóis , Candidíase , Antifúngicos/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Azóis/farmacologia , Calcineurina/metabolismo , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Nitrogênio/metabolismo , Oligomicinas/farmacologia , Sirolimo/farmacologia , Proteínas Fúngicas/metabolismo
14.
Commun Biol ; 5(1): 1181, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333531

RESUMO

There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Probióticos , Camundongos , Animais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/metabolismo , Sideróforos , Microambiente Tumoral , Ferricromo/uso terapêutico , Monitorização Imunológica , Inibidores de Checkpoint Imunológico , Probióticos/farmacologia , Neoplasias Pancreáticas
15.
RSC Adv ; 11(58): 36850-36858, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494355

RESUMO

Several salicylidene-based colorimetric and fluorimetric anion sensors are known in the literature. However, our 1H-NMR experimental results (in DMSO-d6) showed hydrolysis of imine (-N[double bond, length as m-dash]CH-) bonds in salicylidene-based receptors (SL, CL1 and CL2) in the presence of quaternary ammonium salts (n-Bu4N+) of halides (Cl- and Br-) and oxo-anions (H2PO4 -, HSO4 - and CH3COO-). The mono-salicylidene compound CL1 showed the most extensive -N[double bond, length as m-dash]CH- bond hydrolysis in the presence of anions. In contrast, the di-salicylidene compound CL2 and the tris-salicylidene compound SL showed comparatively slow hydrolysis of -N[double bond, length as m-dash]CH- bonds in the presence of anions. Anion-induced imine bond cleavage in salicylidene compounds could easily be detected in 1H-NMR due to the appearance of the salicylaldehyde -CHO peak at 10.3 ppm which eventually became more intense over time, and the -N[double bond, length as m-dash]CH- peak at 8.9-9.0 ppm became considerably weaker. Furthermore, the formation of the salicylidene O-H⋯X- (X- = Cl-/Br-) hydrogen-bonded complex, peak broadening due to proton-exchange processes and keto-enol tautomerism have also been clearly observed in the 1H-NMR experiments. Control 1H-NMR experiments revealed that the presence of moisture in the organic solvents could result in gradual hydrolysis of the salicylidene compounds, and the rate of hydrolysis has further been enhanced significantly in the presence of an anion. Based on 1H-NMR results, we have proposed a general mechanism for the anion-induced hydrolysis of imine bonds in salicylidene-based receptors.

16.
Biomedicines ; 9(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34944630

RESUMO

Pancreatic cancer has the worst prognosis and lowest survival rate among all cancers. Pancreatic cancer cells are highly metabolically active and typically reprogrammed for aberrant glucose metabolism; thus they respond poorly to therapeutic modalities. It is highly imperative to understand mechanisms that are responsible for high glucose metabolism and identify natural/synthetic agents that can repress glucose metabolic machinery in pancreatic cancer cells, to improve the therapeutic outcomes/management of pancreatic cancer patients. We have identified a glycoside, steviol that effectively represses glucose consumption in pancreatic cancer cells via the inhibition of the translation initiation machinery of the molecular components. Herein, we report that steviol effectively inhibits the glucose uptake and lactate production in pancreatic cancer cells (AsPC1 and HPAF-II). The growth, colonization, and invasion characteristics of pancreatic cancer cells were also determined by in vitro functional assay. Steviol treatment also inhibited the tumorigenic and metastatic potential of human pancreatic cancer cells by inducing apoptosis and cell cycle arrest in the G1/M phase. The metabolic shift by steviol was mediated through the repression of the phosphorylation of mTOR and translation initiation proteins (4E-BP1, eIF4e, eIF4B, and eIF4G). Overall, the results of this study suggest that steviol can effectively suppress the glucose metabolism and translation initiation in pancreatic cancer cells to mitigate their aggressiveness. This study might help in the design of newer combination therapeutic strategies for pancreatic cancer treatment.

17.
Clin Case Rep ; 9(4): 2019-2022, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936633

RESUMO

Necrotizing sialometaplasia can make anyone very anxious about the lesion especially if they have habit of tobacco consumption. It requires a prompt diagnosis, counseling with assurance to patient and treatment.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32942047

RESUMO

Independent studies from our group and others have provided evidence that sphingolipids (SLs) influence the antimycotic susceptibility of Candida species. We analyzed the molecular SL signatures of drug-resistant clinical isolates of Candida auris, which have emerged as a global threat over the last decade. This included Indian hospital isolates of C. auris, which were either resistant to fluconazole (FLCR) or amphotericin B (AmBR) or both drugs. Relative to Candida glabrata and Candida albicans strains, these C. auris isolates were susceptible to SL pathway inhibitors such as myriocin and aureobasidin A, suggesting that SL content may influence azole and AmB susceptibilities. Our analysis of SLs confirmed the presence of 140 SL species within nine major SL classes, namely the sphingoid bases, Cer, αOH-Cer, dhCer, PCer, αOH-PCer, αOH-GlcCer, GlcCer, and IPC. Other than for αOH-GlcCer, most of the SLs were found at higher concentrations in FLCR isolates as compared to the AmBR isolates. SLs were at intermediate levels in FLCR + AmBR isolates. The observed diversity of molecular species of SL classes based on fatty acyl composition was further reflected in their distinct specific imprint, suggesting their influence in drug resistance. Together, the presented data improves our understanding of the dynamics of SL structures, their synthesis, and link to the drug resistance in C. auris.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/metabolismo , Farmacorresistência Fúngica Múltipla/fisiologia , Fluconazol/farmacologia , Glucosilceramidas/metabolismo , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Candida albicans/metabolismo , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Candida glabrata/metabolismo , Candidíase/microbiologia , Cromatografia Líquida , Depsipeptídeos/farmacologia , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Glucosilceramidas/classificação , Glucosilceramidas/isolamento & purificação , Humanos , Lipidômica/métodos , Espectrometria de Massas em Tandem
19.
Pathogens ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832620

RESUMO

Reduced sensitivity of the human malaria parasite, Plasmodium falciparum, to Artemisinin and its derivatives (ARTs) threatens the global efforts towards eliminating malaria. ARTs have been shown to cause ubiquitous cellular and genetic insults, which results in the activation of the unfolded protein response (UPR) pathways. The UPR restores protein homeostasis, which otherwise would be toxic to cellular survival. Here, we interrogated the role of DNA-damage inducible protein 1 (PfDdi1), a unique proteasome-interacting retropepsin in mediating the actions of the ARTs. We demonstrate that PfDdi1 is an active A2 family protease that hydrolyzes ubiquitinated proteasome substrates. Treatment of P. falciparum parasites with ARTs leads to the accumulation of ubiquitinated proteins in the parasites and blocks the destruction of ubiquitinated proteins by inhibiting the PfDdi1 protease activity. Besides, whereas the PfDdi1 is predominantly localized in the cytoplasm, exposure of the parasites to ARTs leads to DNA fragmentation and increased recruitment of the PfDdi1 into the nucleus. Furthermore, we show that Ddi1 knock-out Saccharomycescerevisiae cells are more susceptible to ARTs and the PfDdI1 protein robustly restores the corresponding functions in the knock-out cells. Together, these results show that ARTs act in multiple ways; by inducing DNA and protein damage and might be impairing the damage recovery by inhibiting the activity of PfDdi1, an essential ubiquitin-proteasome retropepsin.

20.
Int J Dent ; 2021: 5583412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747082

RESUMO

BACKGROUND: Diabetes mellitus is a metabolic disease which is seen increasing globally and is diagnosed and monitored on basis of invasive blood investigations. Salivary glands are affected in diabetes mellitus. The objective of this study was to assess ultrasonographic measurements of parotid glands and correlate with the glycosylated hemoglobin levels in type 2 diabetic mellitus and duration of type 2 diabetic mellitus and treatment regimens. MATERIALS AND METHODS: This study was conducted on 50 subjects of type 2 diabetes mellitus and on 50 healthy controls. After HbA1C analysis of selected individuals, 100 individuals were grouped into group I (above 5.7) and group II (below 5.7). Ultrasonographic measurements (length (L), transverse dimension (TD), depth lateral to the mandible (DLM), and depth dorsal to the mandible (DDM)) of bilateral parotid glands were calculated. Statistical analysis was done using the chi-square test of significance and Spearman correlation coefficients. RESULTS: On correlation with measurement of right (L, DLM, DDM) and left (TD, DLM, DDM) of parotid glands with duration of type 2 diabetes mellitus, we found a moderate positive relationship, whereas as for right (TD) and left (L), we found a low-positive relationship. Similarly, for right (L, TD, DLM, DDM) and left (TD, DDM) parotid glands with HbA1C, we found a low-positive relationship, whereas for left parotid gland (L, DLM) with HbA1C, we found a moderate positive relationship. The mean DLM of right and left parotids in the insulin group was found to be slightly more than that in the combined group which was statistically insignificant. CONCLUSION: Ultrasonographic measurements of parotid glands were found to be higher in study subjects as compared to control subjects, and they increased with increased HbA1C levels; also, there was no difference in treatment regimen. Ultrasonography could be a prospective diagnostic test for detection and monitoring of diabetes mellitus, and still further studies are required for this.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA