Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 680-690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38223976

RESUMO

Emulsifiers are essential for achieving a homogenous distribution of lipophilic supplements in in vitro rumen fluid incubations. Since emulsifiers can alter rumen fermentation, it is crucial to select one that minimally impacts fermentation parameters to reduce potential biases. This study aimed to evaluate seven emulsifiers' impact on in vitro ruminal fermentation using the Hohenheim Gas Test in order to identify the most inert emulsifier. Rumen fluids were collected from three non-lactating Original Brown-Swiss cannulated cows before morning feeding and incubated for 24 h with a basal diet in triplicates. The emulsifiers tested were ethanol, ethyl acetate, propylene glycol, glycerol, ethylene glycol, soy lecithin, and Tween® 80, each in two dosages (0.5% or 1% v/v). The untreated basal diet served as control. Compared to control, in vitro organic matter digestibility was enhanced by ethyl acetate (by 36.9 and 48.2%), ethylene glycol (by 20.6 and 20.1%), glycerol (by 46.9 and 56.8%) and soy lecithin (by 19.7 and 26.8%) at 0.5 and 1% dosage, respectively. Additionally, the 24-h methane production increased for ethanol (by 41.9 and 46.2%), ethylene glycol (by 50.5 and 51.5%), and glycerol (by 63.1 and 65.4%) for the 0.5 and 1% dosage, respectively, and 0.5% dosage for ethyl acetate (by 31.6%). The acetate molar proportion was 17.2%pt higher for ethyl acetate, and 25.5%pt lower for glycerol at 1% dosage, compared to the control. The propionate concentration was 22.1%pt higher 1% glycerol, and 15.2%pt and 15.1%pt higher for 0.5 and 1% propylene glycol, respectively, compared to the control. In summary, Tween® 80 did not significantly affect in vitro rumen fermentation parameters, making it the most suitable choice for in vitro incubations involving lipophilic substances in rumen fluid. Ethanol may be considered as an alternative emulsifier if methane production is not the variable of interest.


Assuntos
Emulsificantes , Fermentação , Polissorbatos , Rúmen , Animais , Rúmen/metabolismo , Bovinos , Polissorbatos/farmacologia , Polissorbatos/química , Emulsificantes/química , Emulsificantes/farmacologia , Feminino , Ração Animal/análise
2.
J Dairy Res ; 88(1): 23-28, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33726882

RESUMO

For this research communication our objective was to investigate to what extent milk coagulation properties and milk fatty acid (FA) composition were affected by different feeding systems, season and their interaction. Eighteen cows in total were subjected to one of three different feeding system treatments: full-time grazing or part-time grazing combined with indoor feeding of fresh grass with low or high concentrate supplementation. Milk was sampled in spring, summer and autumn. Milk coagulation time was 15.0, 19.0 and 17.7 min, coagulation dynamics 1.67, 3.41 and 1.79 min, and curd firmness 52.7, 32.4 and 47.0 mm in spring, summer and autumn, respectively. Thus, milk coagulation properties of the milk were lower during summer. There were strong seasonal effects on milk FA proportions, but there were not always changes with progressing season, or changes were different with respect to the impact of the feeding systems (system × season interaction). The milk fat was favourably rich in oleic acid, conjugated linoleic acid and α-linolenic acid and had a low n-6/n-3 fatty acid ratio in all systems. Factors like seasonal variations in grass composition and the energy balance of the cows were considered relevant for the milk FA composition. Overall, seasonal variations in milk quality were less pronounced with part-time grazing with fresh grass indoors as compared to full-time grazing without concentrate.


Assuntos
Ração Animal , Bovinos/metabolismo , Ácidos Graxos/análise , Leite/química , Poaceae , Estações do Ano , Animais , Queijo/análise , Fenômenos Químicos , Dieta/veterinária , Feminino , Concentração de Íons de Hidrogênio , Proteínas do Leite/análise
3.
Sci Rep ; 11(1): 21761, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741032

RESUMO

Enteric fermentation from ruminants is a primary source of anthropogenic methane emission. This study aims to add another approach for methane mitigation by manipulation of the rumen microbiome. Effects of choline supplementation on methane formation were quantified in vitro using the Rumen Simulation Technique. Supplementing 200 mM of choline chloride or choline bicarbonate reduced methane emissions by 97-100% after 15 days. Associated with the reduction of methane formation, metabolomics analysis revealed high post-treatment concentrations of ethanol, which likely served as a major hydrogen sink. Metagenome sequencing showed that the methanogen community was almost entirely lost, and choline-utilizing bacteria that can produce either lactate, ethanol or formate as hydrogen sinks were enriched. The taxa most strongly associated with methane mitigation were Megasphaera elsdenii and Denitrobacterium detoxificans, both capable of consuming lactate, which is an intermediate product and hydrogen sink. Accordingly, choline metabolism promoted the capability of bacteria to utilize alternative hydrogen sinks leading to a decline of hydrogen as a substrate for methane formation. However, fermentation of fibre and total organic matter could not be fully maintained with choline supplementation, while amino acid deamination and ethanolamine catabolism produced excessive ammonia, which would reduce feed efficiency and adversely affect live animal performance.


Assuntos
Colina/administração & dosagem , Microbioma Gastrointestinal , Lipotrópicos/administração & dosagem , Metano/biossíntese , Rúmen/microbiologia , Animais , Bovinos , Suplementos Nutricionais
4.
Br J Nutr ; 102(9): 1308-17, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19505345

RESUMO

Mitigation of methanogenesis in ruminants has been an important goal for several decades. Free lauric acid, known to suppress ruminal methanogenesis, has a low palatability; therefore, in the present study the aim was to evaluate the mitigation efficacy of its esterified form (monolaurin). Further, 13C-isotope abundance (delta13C) and 13C-12C fractionation during methanogenesis and fermentation were determined to evaluate possible microbial C-isotope preferences. Using the rumen simulation technique, four basal diets, characterised either by the C3 plants grass (hay) and wheat (straw and grain), or the C4 plant (13C excess compared with C3 plants) maize (straw and grain), and a mixture of the latter two, were incubated with and without monolaurin (50 g/kg dietary DM). Added to hay, monolaurin did not significantly affect methanogenesis. When added to the other diets (P < 0.05 for the wheat-based diet) methane formation was lowered. Monolaurin decreased fibre disappearance (least effect with the hay diet), acetate:propionate ratio, and protozoal counts. Feed residues and SCFA showed the same delta13C as the diets. Methane was depleted in 13C while CO2 was enriched in 13C compared with the diets. Monolaurin addition resulted in 13C depletion of CO2 and enrichment in CH4 (the latter only in the hay diet). In conclusion, monolaurin proved to effectively decrease methanogenesis in the straw-grain diets although this effect might partly be explained by the concomitantly reduced fibre disappearance. The influence on 13C-isotope abundance and fractionation supports the hypothesis that ruminal microbes seem to differentiate to some extent between C-isotopes during methanogenesis and fermentation.


Assuntos
Bovinos/metabolismo , Grão Comestível/metabolismo , Lauratos/farmacologia , Metano/biossíntese , Monoglicerídeos/farmacologia , Rúmen/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Carbono , Isótopos de Carbono , Dieta , Suplementos Nutricionais , Fermentação/efeitos dos fármacos , Rúmen/microbiologia
5.
J Anim Sci ; 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30852594

RESUMO

Polyphenols are known to affect digestion of ruminants, whereas there is little information about their metabolic effects. In a 2 × 2-factorial experiment, the effects of supplementing a phenolic grapeseed extract were compared in 11 East Friesian dairy sheep and 9 Saanen goats. The concentrate, supplemented with 7.4 g/100 g DM grapeseed extract, had contents of 3.5 g additional phenols/100 g DM and was compared with a low phenolic control concentrate. Performance, total phenols in blood, milk, urine and feces, antioxidant capacity of the blood, and saliva properties were examined. The experiment lasted for 11 wk from parturition to late lactation, with an initial adaptation phase of 1 wk. Milk yield was measured daily after weaning at about 7 wk after parturition. Blood, milk, saliva, feces, and urine were sampled 4, 3, 2, 2, and 2 times per animal, respectively. The phenolic diet increased phenol concentrations in blood (+10% and 17% in weeks 5 and 11, respectively) and in milk (+32% in week 5) in some of the sampling weeks. There were no clear species differences in phenol concentrations in blood plasma, milk, urine, and feces. However, at the end of the experiment, the supplemented goats had higher (P < 0.05) urinary phenol concentrations than the nonsupplemented goats. A weak relationship (P < 0.05) was found between phenol intake and phenol excretion with milk for sheep but not goats. The phenolic diet did not influence blood antioxidant capacity and tannin-binding capacity of the saliva. The saliva of the goats had a higher tannin-binding capacity than sheep saliva. The effects of the extract on milk yield were inconsistent between sheep and goats. In general, goats had higher feed and nutrient intakes, were heavier, and yielded more milk. Additionally, milk protein and lactose contents were lower and milk urea content was higher in goats than sheep. In conclusion, supplementing grapeseed extract to sheep and goats elevated phenol concentrations in milk and blood to a certain extent, but most of the phenols were lost via urine. The study gave another indication that goats seem to have developed coping mechanisms like a higher salivary tannin-binding capacity, mechanisms which are less pronounced in sheep.

6.
J Dairy Res ; 72(1): 65-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15747733

RESUMO

The influence of high altitude, alpine origin of the forage and roughage-only diets on milk protein content and composition, plasmin activity and cheesemaking properties was investigated. There were four treatment groups, each consisting of six dairy cows in early to mid-lactation. Two groups were fed only with hay ad libitum either at 2000 m or at 400 m a.s.l. One group, kept in the lowlands, was pair-fed to the alpine-site group and another group received a mixed diet of silages, hay and concentrates. Two hay types, harvested either at the alpine site or in the lowlands, were offered to all cows fed with hay alone, following a change-over design in three periods each of 3 weeks. In the respective third week, milk was sampled at every milking. Hay of alpine origin significantly reduced milk protein, in particular whey proteins, which is why the casein number increased. kappa-Casein proportion in total casein was reduced and its glycosylation was increased by the alpine hay. The apparent plasminogen-derived activity was reduced when alpine hay was given, but apparent plasmin activity and rennet coagulation properties of the milk were not affected by hay type. Independent of hay type, the high altitude group showed a significantly reduced milk protein content, lower glycosylation of kappa-casein and impaired rennet coagulation properties. For several of the traits, the trend was the same in the pair-fed group. There was no effect of altitude on apparent plasmin activity. Hay-alone v. the mixed diet resulted initially in marked declines in milk protein content but did not impair cheesemaking properties. Thus the extensive diet without concentrates, typical of high-alpine conditions, contributed less to the overall effect of extensive alpine v. intensive lowland feeding systems than hay quality and altitude did. In conclusion, certain positive influences of the alpine sojourn of cows on cheese processing quality are overruled by the major adverse impact of lower milk protein content.


Assuntos
Ração Animal , Queijo/análise , Indústria de Laticínios/métodos , Fibrinolisina/análise , Proteínas do Leite/análise , Poaceae , Altitude , Animais , Bovinos , Feminino , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA