Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Assist Reprod Genet ; 38(7): 1655-1663, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021832

RESUMO

PURPOSE: Our retrospective study is to investigate an end-to-end deep learning model in identifying ploidy status through raw time-lapse video. METHODS: By randomly dividing the dataset of time-lapse videos with known outcome of preimplantation genetic testing for aneuploidy (PGT-A), a deep learning model on raw videos was trained by the 80% dataset, and used to test the remaining 20%, by feeding time-lapse videos as input and the PGT-A prediction as output. The performance was measured by an average area under the curve (AUC) of the receiver operating characteristic curve. RESULT(S): With 690 sets of time-lapse video image, combined with PGT-A results, our deep learning model has achieved an AUC of 0.74 from the test dataset (138 videos), in discriminating between aneuploid embryos (group 1) and others (group 2, including euploid and mosaic embryos). CONCLUSION: Our model demonstrated a proof of concept and potential in recognizing the ploidy status of tested embryos. A larger scale and further optimization on the exclusion criteria would be included in our future investigation, as well as prospective approach.


Assuntos
Aneuploidia , Aprendizado Profundo , Diagnóstico Pré-Implantação/métodos , Imagem com Lapso de Tempo/métodos , Adulto , Área Sob a Curva , Blastocisto , Calibragem , Diploide , Feminino , Fertilização in vitro , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA