Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genes Cells ; 29(4): 301-315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366725

RESUMO

Antiandrogens were originally developed as therapeutic agents for prostate cancer but are also expected to be effective for breast cancer. However, the role of androgen signaling in breast cancer has long been controversial due to the limited number of experimental models. Our study aimed to comprehensively investigate the efficacy of antiandrogens on breast cancer. In the present study, a total of 18 breast cancer cell lines were treated with the agonist or antagonists of the androgen receptor (AR). Among the 18 cell lines tested, only T-47D cells proliferated in an androgen-dependent manner, while the other cell lines were almost irresponsive to AR stimulation. On the other hand, treatment with AR antagonists at relatively high doses suppressed the proliferation of not only T-47D cells but also some other cell lines including AR-low/negative cells. In addition, expression of the full-length AR and constitutively active AR splice variants, AR-V7 and ARV567es, was not correlated with sensitivity to AR antagonists. These data suggest that the antiproliferative effect of AR antagonists is AR-independent in some cases. Consistently, proliferation of AR-knockout BT-549 cells was inhibited by AR antagonists. Identification of biomarkers would be necessary to determine which breast cancer patients will benefit from these drugs.


Assuntos
Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Próstata/metabolismo , Células MCF-7 , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672831

RESUMO

Metastasis is a complex event in cancer progression and causes most deaths from cancer. Repeated transplantation of metastatic cancer cells derived from transplanted murine organs can be used to select the population of highly metastatic cancer cells; this method is called as in vivo selection. The in vivo selection method and highly metastatic cancer cell lines have contributed to reveal the molecular mechanisms of cancer metastasis. Here, we present an overview of the methodology for the in vivo selection method. Recent comparative analysis of the transplantation methods for metastasis have revealed the divergence of metastasis gene signatures. Even cancer cells that metastasize to the same organ show various metastatic cascades and gene expression patterns by changing the transplantation method for the in vivo selection. These findings suggest that the selection of metastasis models for the study of metastasis gene signatures has the potential to influence research results. The study of novel gene signatures that are identified from novel highly metastatic cell lines and patient-derived xenografts (PDXs) will be helpful for understanding the novel mechanisms of metastasis.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica
3.
Cancers (Basel) ; 12(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640677

RESUMO

HER2 is overexpressed in 25-30% of breast cancers, and approximately 30% of HER2-positive breast cancers metastasize to the brain. Although the incidence of brain metastasis in HER2-positive breast cancer is high, previous studies have been mainly based on cell lines of the triple-negative subtype, and the molecular mechanisms of brain metastasis in HER2-positive breast cancer are unclear. In the present study, we performed intracranial injection using nine HER2-positive breast cancer cell lines to evaluate their proliferative activity in brain tissue. Our results show that UACC-893 and MDA-MB-453 cells rapidly proliferated in the brain parenchyma, while the other seven cell lines moderately or slowly proliferated. Among these nine cell lines, the proliferative activity in brain tissue was not correlated with either the HER2 level or the HER2 phosphorylation status. To extract signature genes associated with brain colonization, we conducted microarray analysis and found that these two cell lines shared 138 gene expression patterns. Moreover, some of these genes were correlated with poor prognosis in HER2-positive breast cancer patients. Our findings might be helpful for further studying brain metastasis in HER2-positive breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA