RESUMO
Factor XI (FXI) is an integral component of the intrinsic pathway of the coagulation cascade and plays a critical role in thrombus formation. Because its role in the pathogenesis of cerebral microembolic signals (MES) is unclear, this study used a potent and selective small molecule inhibitor of FXIa, compound 1, to assess the effect of FXI blockade in our recently established preclinical model of cerebral MES induced by FeCl3 injury of the carotid artery in male New Zealand White rabbits. Ascending doses of compound 1 were evaluated simultaneously for both carotid arterial thrombosis by a Doppler flowmeter and MES in the middle cerebral artery by a transcranial Doppler. Plasma drug exposure and pharmacodynamic responses to compound 1 treatment were also assessed. The effective dose for 50% inhibition (ED50) of thrombus formation was 0.003 mg/kg/h compound 1, i.v. for the integrated blood flow, 0.004 mg/kg/h for reduction in thrombus weight, and 0.106 mg/kg/h for prevention of MES. The highest dose, 3 mg/kg/h compound 1, achieved complete inhibition in both thrombus formation and MES. In addition, we assessed the potential bleeding liability of compound 1 (5 mg/kg/h, i.v., >1250-fold ED50 levels in arterial thrombosis) in rabbits using a cuticle bleeding model, and observed about 2-fold (not statistically significant) prolongation in bleeding time. Our study demonstrates that compound 1 produced a robust and dose-dependent inhibition of both arterial thrombosis and MES, suggesting that FXIa blockade may represent a novel therapeutic strategy for the reduction in MES in patients at risk for ischemic stroke.
Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Trombose das Artérias Carótidas , Fator XIa/antagonistas & inibidores , Embolia Intracraniana , Animais , Coagulação Sanguínea/fisiologia , Trombose das Artérias Carótidas/sangue , Trombose das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/diagnóstico por imagem , Trombose das Artérias Carótidas/tratamento farmacológico , Modelos Animais de Doenças , Desenho de Fármacos , Injeções Intravenosas , Embolia Intracraniana/sangue , Embolia Intracraniana/diagnóstico por imagem , Embolia Intracraniana/etiologia , Embolia Intracraniana/prevenção & controle , Masculino , Coelhos , Ultrassonografia Doppler Transcraniana/métodosRESUMO
Vorapaxar is an approved drug for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. Subsequent to the discovery of Vorapaxar, medicinal chemistry efforts were continued to identify structurally differentiated leads. Toward this goal, extensive structure-activity relationship studies using a C-ring-truncated version of Vorapaxar culminated in the discovery of three leads, represented as 13, 14, and 23. Among these leads, compound 14 possessed favorable pharmacokinetic properties and an off-target profile, which supported additional profiling in an exploratory rat toxicology study.
Assuntos
Infarto do Miocárdio , Trombose , Animais , Humanos , Lactonas , Infarto do Miocárdio/tratamento farmacológico , Inibidores da Agregação Plaquetária , Ratos , Receptor PAR-1 , Receptores Ativados por Proteinase , Trombose/induzido quimicamente , Trombose/tratamento farmacológicoRESUMO
OBJECTIVE: To determine the antithrombotic effects of SCH 602539, an analog of the selective protease-activated receptor (PAR)-1 antagonist vorapaxar (formerly SCH 530348) currently in advanced clinical development, and the P2Y(12) ADP receptor antagonist cangrelor, alone and in combination. METHODS AND RESULTS: Multiple platelet activation pathways contribute to thrombosis. The effects of SCH 602539 and cangrelor alone and in combination on cyclic flow reductions were evaluated in a Folts model of thrombosis in cynomolgus monkeys. The effects of these treatments on ex vivo platelet aggregation and coagulation parameters were also monitored. Dose-dependent inhibition of cyclic flow reductions was observed after treatment with SCH 602539 alone and cangrelor alone (P<0.05 versus vehicle for the 2 highest concentrations of each agent). The combination of SCH 602539 and cangrelor was associated with synergistic antithrombotic effects (P<0.05 versus vehicle for all combinations tested). The 2 highest doses of SCH 602539 inhibited platelet aggregation in response to PAR-1-selective high-affinity thrombin receptor agonist peptide by greater than 80% but did not affect platelet aggregation induced by other agonists; also, they did not affect any coagulation parameters. CONCLUSIONS: The combined inhibition of the PAR-1 and the P2Y(12) ADP platelet activation pathways had synergistic antithrombotic and antiplatelet effects. The addition of a PAR-1 antagonist to a P2Y(12) ADP receptor antagonist may provide incremental clinical benefits in patients with atherothrombotic disease, both in short- and long-term settings. These hypotheses need to be tested clinically.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Fibrinolíticos/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Receptor PAR-1/antagonistas & inibidores , Trombose/prevenção & controle , Monofosfato de Adenosina/uso terapêutico , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Macaca fascicularis , Antagonistas do Receptor Purinérgico P2Y/uso terapêuticoRESUMO
An analog of the thrombin receptor antagonist vorapaxar (SCH 530348) with increased aqueous solubility, compound 9c (SCH 602539), was discovered through incorporation of polar substituents on the pyridine ring of the himbacine-derived lead series. This analog retained the excellent potency, pharmacokinetic and safety properties of vorapaxar while increasing the aqueous solubility by 20-fold. Also presented are in vivo evaluations of this compound in a cynomolgus monkey platelet aggregation assay and in a Folts model of thrombosis in anesthetized monkeys.
Assuntos
Lactonas/química , Inibidores da Agregação Plaquetária/química , Piridinas/química , Água/química , Animais , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Lactonas/farmacologia , Macaca fascicularis , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacologia , Receptores de Trombina/antagonistas & inibidores , SolubilidadeRESUMO
The discovery of an exceptionally potent series of thrombin receptor (PAR-1) antagonists based on the natural product himbacine is described. Optimization of this series has led to the discovery of 4 (SCH 530348), a potent, oral antiplatelet agent that is currently undergoing Phase-III clinical trials for acute coronary syndrome (unstable angina/non-ST segment elevation myocardial infarction) and secondary prevention of cardiovascular events in high-risk patients.
Assuntos
Alcaloides/síntese química , Furanos/síntese química , Lactonas/síntese química , Naftalenos/síntese química , Piperidinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Piridinas/síntese química , Receptores de Trombina/antagonistas & inibidores , Administração Oral , Alcaloides/farmacocinética , Alcaloides/farmacologia , Animais , Furanos/farmacocinética , Furanos/farmacologia , Humanos , Técnicas In Vitro , Lactonas/farmacocinética , Lactonas/farmacologia , Macaca fascicularis , Naftalenos/farmacocinética , Naftalenos/farmacologia , Piperidinas/farmacocinética , Piperidinas/farmacologia , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Relação Estrutura-AtividadeRESUMO
We have synthesized several C7-aminomethyl analogues of vorapaxar that are potent PAR-1 antagonists. Many of these analogues showed excellent in vitro binding affinity and pharmacokinetics profile in rats. Compound 6a from this series showed excellent PAR-1 activity (K i = 5 nM). We have also synthesized a C9a-hydroxy analogue of vorapaxar, which showed very good PAR-1 affinity (K i = 19.5 nM) along with excellent rat pharmacokinetic profile and ex vivo efficacy in the cynomolgus monkey.
RESUMO
We have synthesized several C7-spirocyclic analogues of vorapaxar and evaluated their in vitro activities against PAR-1 receptor. Some of these analogues showed activities and rat plasma levels comparable to vorapaxar. Compound 5c from this series showed excellent PAR-1 activity (K i = 5.1 nM). We also present a model of these spirocyclic compounds docked to the PAR-1 receptor based on the X-ray crystal structure of vorapaxar bound to PAR-1 receptor. This model explains some of the structure-activity relationships in this series.
RESUMO
Structure-guided optimization of a series of C-5 alkyl substituents led to the discovery of a potent nicotinic acid receptor agonist SCH 900271 (33) with an EC50 of 2 nM in the hu-GPR109a assay. Compound 33 demonstrated good oral bioavailability in all species. Compound 33 exhibited dose-dependent inhibition of plasma free fatty acid (FFA) with 50% FFA reduction at 1.0 mg/kg in fasted male beagle dogs. Compound 33 had no overt signs of flushing at doses up to 10 mg/kg with an improved therapeutic window to flushing as compared to nicotinic acid. Compound 33 was evaluated in human clinical trials.
RESUMO
Nicotinic acid has been used clinically for decades to control serum lipoproteins. Nicotinic acid lowers very low-density lipoprotein (VLDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, and lipoprotein-a (LPa), and it is also effective in raising high-density lipoprotein (HDL)-cholesterol. However, nicotinic acid has several side effects in clinical use. The most notable is intense cutaneous vasodilation "flushing" on the upper body and face. We discovered a pyranopyrimidinedione series to be nicotinic acid receptor agonists. A potent nicotinic acid receptor agonist from this series {5-(3-cyclopropylpropyl)-2-(difluoromethyl)-3H-pyrano[2,3-d]pyrimidine-4,7-dione}with reduced flushing side effect in dogs was identified.