Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
IUBMB Life ; 66(2): 110-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24578297

RESUMO

Through the eons of time, out of all possible configurations, nature has selected glucose not only as a vital source of energy to sustain life but also as the molecule who's structure supplies the appropriate elements required for a cell to grow and multiply. This understanding, at least in part, explains the profound effects that the analog of glucose, 2-deoxy-d-glucose, has been shown to have on as common and widespread diseases as cancer, viral infection, aging-related morbidity, epilepsy, and others. This review is confined to summarizing some of the salient findings of this remarkable compound as they relate mainly to cancer.


Assuntos
Desoxiglucose/metabolismo , Estresse do Retículo Endoplasmático/genética , Neoplasias/metabolismo , Replicação Viral/genética , Apoptose/genética , Autofagia/genética , Desoxiglucose/genética , Glicosilação , Humanos , Hipóxia , Neoplasias/genética , Neoplasias/patologia
2.
Blood ; 118(5): 1329-39, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21659544

RESUMO

Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Membrana/fisiologia , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteína bcl-X/fisiologia , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/farmacologia , Sulfonamidas/farmacologia , Distribuição Tecidual , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
3.
Lancet Neurol ; 22(7): 578-590, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37353278

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells are highly effective in treating haematological malignancies, but associated toxicities and the need for lymphodepletion limit their use in people with autoimmune disease. To explore the use of CAR T cells for the treatment of people with autoimmune disease, and to improve their safety, we engineered them with RNA (rCAR-T)-rather than the conventional DNA approach-to target B-cell maturation antigen (BCMA) expressed on plasma cells. To test the suitability of our approach, we used rCAR-T to treat individuals with myasthenia gravis, a prototypical autoantibody disease mediated partly by pathogenic plasma cells. METHODS: MG-001 was a prospective, multicentre, open-label, phase 1b/2a study of Descartes-08, an autologous anti-BCMA rCAR-T therapy, in adults (ie, aged ≥18 years) with generalised myasthenia gravis and a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of 6 or higher. The study was done at eight sites (ie, academic medical centres or community neurology clinics) in the USA. Lymphodepletion chemotherapy was not used. In part 1 (phase 1b), participants with Myasthenia Gravis Foundation of America (MGFA) disease class III-IV generalised myasthenia gravis received three ascending doses of Descartes-08 to determine a maximum tolerated dose. In part 2 (phase 2a), participants with generalised myasthenia gravis with MGFA disease class II-IV received six doses at the maximum tolerated dose in an outpatient setting. The primary objective was to establish safety and tolerability of Descartes-08; secondary objectives were to assess myasthenia gravis disease severity and biomarkers in participants who received Descartes-08. This trial is registered with clinicaltrials.gov, NCT04146051. FINDINGS: We recruited 16 individuals for screening between Jan 7, 2020 and Aug 3, 2022. 14 participants were enrolled (n=3 in part 1, n=11 in part 2). Ten participants were women and four were men. Two individuals did not qualify due to low baseline MG-ADL score (n=1) or lack of generalised disease (n=1). Median follow-up in part 2 was 5 months (range 3-9 months). There was no dose-limiting toxicity, cytokine release syndrome, or neurotoxicity. Common adverse events were headache (six of 14 participants), nausea (five of 14), vomiting (three of 14), and fever (four of 14), which resolved within 24 h of infusion. Fevers were not associated with increased markers of cytokine release syndrome (IL-6, IL-2, and TNF). Mean improvements from baseline to week 12 were -6 (95% CI -9 to -3) for MG-ADL score, -7 (-11 to -3) for Quantitative Myasthenia Gravis score, -14 (-19 to -9) for Myasthenia Gravis Composite score, and -9 (-15 to -3) for Myasthenia Gravis Quality of Life 15-revised score. INTERPRETATION: In this first study of an rCAR-T therapy in individuals with an autoimmune disease, Descartes-08 appeared to be safe and was well tolerated. Descartes-08 infusions were followed by clinically meaningful decreases on myasthenia gravis severity scales at up to 9 months of follow-up. rCAR-T therapy warrants further investigation as a potential new treatment approach for individuals with myasthenia gravis and other autoimmune diseases. FUNDING: Cartesian Therapeutics and National Institute of Neurological Disorders and Stroke of the National Institutes of Health.


Assuntos
Miastenia Gravis , Receptores de Antígenos Quiméricos , Adolescente , Adulto , Feminino , Humanos , Masculino , Atividades Cotidianas , Autoanticorpos , Terapia Baseada em Transplante de Células e Tecidos , Síndrome da Liberação de Citocina , Miastenia Gravis/tratamento farmacológico , Estudos Prospectivos , Qualidade de Vida , Receptores de Antígenos Quiméricos/uso terapêutico , Resultado do Tratamento
4.
Antimicrob Agents Chemother ; 56(11): 5794-803, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926574

RESUMO

Lytic replication of the Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for the maintenance of both the infected state and characteristic angiogenic phenotype of Kaposi's sarcoma and thus represents a desirable therapeutic target. During the peak of herpesvirus lytic replication, viral glycoproteins are mass produced in the endoplasmic reticulum (ER). Normally, this leads to ER stress which, through an unfolded protein response (UPR), triggers phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α), resulting in inhibition of protein synthesis to maintain ER and cellular homeostasis. However, in order to replicate, herpesviruses have acquired the ability to prevent eIF2α phosphorylation. Here we show that clinically achievable nontoxic doses of the glucose analog 2-deoxy-d-glucose (2-DG) stimulate ER stress, thereby shutting down eIF2α and inhibiting KSHV and murine herpesvirus 68 replication and KSHV reactivation from latency. Viral cascade genes that are involved in reactivation, including the master transactivator (RTA) gene, glycoprotein B, K8.1, and angiogenesis-regulating genes are markedly decreased with 2-DG treatment. Overall, our data suggest that activation of UPR by 2-DG elicits an early antiviral response via eIF2α inactivation, which impairs protein synthesis required to drive viral replication and oncogenesis. Thus, induction of ER stress by 2-DG provides a new antiherpesviral strategy that may be applicable to other viruses.


Assuntos
Antivirais/farmacologia , Desoxiglucose/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Herpesvirus Humano 8/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/virologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fosforilação , Ativação Transcricional/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Ensaio de Placa Viral , Proteínas Virais/biossíntese , Proteínas Virais/genética , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Leukemia ; 35(3): 752-763, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32632095

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy remains limited to select centers that can carefully monitor adverse events. To broaden use of CAR T cells in community clinics and in a frontline setting, we developed a novel CD8+ CAR T-cell product, Descartes-08, with predictable pharmacokinetics for treatment of multiple myeloma. Descartes-08 is engineered by mRNA transfection to express anti-BCMA CAR for a defined length of time. Descartes-08 expresses anti-BCMA CAR for 1 week, limiting risk of uncontrolled proliferation; produce inflammatory cytokines in response to myeloma target cells; and are highly cytolytic against myeloma cells regardless of the presence of myeloma-protecting bone marrow stromal cells, exogenous a proliferation-inducing ligand, or drug resistance including IMiDs. The magnitude of cytolysis correlates with anti-BCMA CAR expression duration, indicating a temporal limit in activity. In the mouse model of aggressive disseminated human myeloma, Descartes-08 induces BCMA CAR-specific myeloma growth inhibition and significantly prolongs host survival (p < 0.0001). These preclinical data, coupled with an ongoing clinical trial of Descartes-08 in relapsed/refractory myeloma (NCT03448978) showing preliminary durable responses and a favorable therapeutic index, have provided the framework for a recently initiated trial of an optimized/humanized version of Descartes-08 (i.e., Descartes-11) in newly diagnosed myeloma patients with residual disease after induction therapy.


Assuntos
Antígeno de Maturação de Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , RNA Mensageiro/genética , Receptores de Antígenos Quiméricos/imunologia , Animais , Apoptose , Antígeno de Maturação de Linfócitos B/genética , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Aging (Albany NY) ; 12(15): 15222-15259, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788422

RESUMO

Immunoglobulin G (IgG) is the most abundant serum antibody which structural characteristics and effector functions are modulated through the attachment of various sugar moieties called glycans. Composition of the IgG N-glycome changes with age of an individual and in different diseases. Variability of IgG glycosylation within a population is well studied and is known to be affected by both genetic and environmental factors. However, global inter-population differences in IgG glycosylation have never been properly addressed. Here we present population-specific N-glycosylation patterns of IgG, analyzed in 5 different populations totaling 10,482 IgG glycomes, and of IgG's fragment crystallizable region (Fc), analyzed in 2,579 samples from 27 populations sampled across the world. Country of residence associated with many N-glycan features and the strongest association was with monogalactosylation where it explained 38% of variability. IgG monogalactosylation strongly correlated with the development level of a country, defined by United Nations health and socioeconomic development indicators, and with the expected lifespan. Subjects from developing countries had low levels of IgG galactosylation, characteristic for inflammation and ageing. Our results suggest that citizens of developing countries may be exposed to environmental factors that can cause low-grade chronic inflammation and the apparent increase in biological age.


Assuntos
Envelhecimento/sangue , Imunoglobulina G/sangue , Adulto , Fatores Etários , Idoso , Estudos de Coortes , Feminino , Saúde Global , Humanos , Masculino , Pessoa de Meia-Idade
7.
Mol Cancer Ther ; 7(6): 1506-13, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18566221

RESUMO

Down-regulation by small interfering RNA or absence of hypoxia-inducible factor (HIF-1alpha) has been shown to lead to increased sensitivity to glycolytic inhibitors in hypoxic tumor cells. In surveying a number of tumor types for differences in intrinsic levels of HIF under hypoxia, we find that the reduction of the upstream pathways of HIF, AKT, and mammalian target of rapamycin (mTOR) correlates with increased toxic effects of 2-deoxy-D-glucose (2-DG) in lung cancer cell lines when treated under hypoxia. Because HIF-1alpha translation is regulated by mTOR, we examined the effects of blocking mTOR under hypoxia with an analogue of rapamycin (CCI-779) in those cell lines that showed increased mTOR and AKT activity and found that HIF-1alpha down-regulation coincided with increased 2-DG killing. CCI-779, however, was ineffective in increasing 2-DG toxicity in cell lines that did not express HIF. These results support the hypothesis that although mTOR inhibition leads to the blockage of numerous downstream targets, CCI-779 increases the toxicity of 2-DG in hypoxic cells through down-regulation of HIF-1alpha. Overall, our findings show that CCI-779 hypersensitizes hypoxic tumor cells to 2-DG and suggests that the intrinsic expression of AKT, mTOR, and HIF in lung cancer, as well as other tumor types, may be important in dictating the decision on how best to use 2-DG alone or in combination with CCI-799 to kill hypoxic tumor cells clinically.


Assuntos
Desoxiglucose/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/patologia , Mutação/genética , RNA Interferente Pequeno/farmacologia , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
8.
Mol Cancer Ther ; 6(2): 732-41, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17308069

RESUMO

Hypoxic regions within solid tumors harbor cells that are resistant to standard chemotherapy and radiotherapy. Because oxygen is required to produce ATP by oxidative phosphorylation, under hypoxia, cells rely more on glycolysis to generate ATP and are thereby sensitive to 2-deoxy-d-glucose (2-DG), an inhibitor of this pathway. Universally, cells respond to lowered oxygen tension by increasing the amount of glycolytic enzymes and glucose transporters via the well-characterized hypoxia-inducible factor-1 (HIF). To evaluate the effects of HIF on 2-DG sensitivity, the following three models were used: (a) cells treated with oligomycin to block mitochondrial function in the presence (HIF(+)) or absence (HIF(-)) of hypoxia, (b) cells treated with small interfering RNA specific for HIF-1alpha and control cells cultured under hypoxia, and (c) a mutant cell line unable to initiate the HIF response and its parental HIF(+) counterpart under hypoxic conditions. In all three models, HIF increased resistance to 2-DG and other glycolytic inhibitors but not to other chemotherapeutic agents. Additionally, HIF reduced the effects of 2-DG on glycolysis (as measured by ATP and lactate assays). Because HIF increases glycolytic enzymes, it follows that greater amounts of 2-DG would be required to inhibit glycolysis, thereby leading to increased resistance to it under hypoxia. Indeed, hexokinase, aldolase, and lactate dehydrogenase were found to be increased as a function of HIF under the hypoxic conditions and cell types we used; however, phosphoglucose isomerase was not. Although both hexokinase and phosphoglucose isomerase are known to interact with 2-DG, our findings of increased levels of hexokinase more likely implicate this enzyme in the mechanism of HIF-mediated resistance to 2-DG. Moreover, because 2-DG is now in phase I clinical trials, our results suggest that glycolytic inhibitors may be more effective clinically when combined with agents that inhibit HIF.


Assuntos
Antimetabólitos/farmacologia , Apoptose/efeitos dos fármacos , Hipóxia Celular , Desoxiglucose/farmacologia , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Glucose-6-Fosfato Isomerase/metabolismo , Glicólise , Células HeLa , Hexoquinase/metabolismo , Humanos , Immunoblotting , Ácido Láctico/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Plasmídeos , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
9.
Mol Cancer Ther ; 6(11): 3049-58, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18025288

RESUMO

In tumor cells growing under hypoxia, inhibiting glycolysis with 2-deoxy-d-glucose (2-DG) leads to cell death, whereas under normoxic conditions cells similarly treated survive. Surprisingly, here we find that 2-DG is toxic in select tumor cell lines growing under normal oxygen tension. In contrast, a more potent glycolytic inhibitor, 2-fluorodeoxy-d-glucose, shows little or no toxicity in these cell types, indicating that a mechanism other than inhibition of glycolysis is responsible for their sensitivity to 2-DG under normoxia. A clue to this other mechanism comes from previous studies in which it was shown that 2-DG interferes with viral N-linked glycosylation and is reversible by exogenous addition of mannose. Similarly, we find that 2-DG interferes with N-linked glycosylation more potently in the tumor cell types that are sensitive to 2-DG under normoxia, which can be reversed by exogenous mannose. Additionally, 2-DG induces an unfolded protein response, including up-regulation of GADD153 (C/EBP-homologous protein), an unfolded protein response-specific mediator of apoptosis, more effectively in 2-DG-sensitive cells. We conclude that 2-DG seems to be toxic in select tumor cell types growing under normoxia by inhibition of N-linked glycosylation and not by glycolysis. Because in a phase I study 2-DG is used in combination with an anticancer agent to target hypoxic cells, our results raise the possibility that in certain cases, 2-DG could be used as a single agent to selectively kill both the aerobic (via interference with glycosylation) and hypoxic (via inhibition of glycolysis) cells of a solid tumor.


Assuntos
Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias/patologia , Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fluordesoxiglucose F18/farmacologia , Glicosilação/efeitos dos fármacos , Humanos , Manose/farmacologia , Modelos Biológicos , Oligossacarídeos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Dobramento de Proteína , Fator de Transcrição CHOP/genética , Regulação para Cima/efeitos dos fármacos
10.
Antioxid Redox Signal ; 9(9): 1383-90, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17627467

RESUMO

The dependence of hypoxic tumor cells on glycolysis as their main means of producing ATP provides a selective target for agents that block this pathway, such as 2-deoxy-D-glucose (2-DG) and 2-fluoro-deoxy-D-glucose (2-FDG). Moreover, it was demonstrated that 2-FDG is a more potent glycolytic inhibitor with greater cytotoxic activity than 2-DG. This activity correlates with the closer structural similarity of 2-FDG to glucose than 2-DG, which makes it a better inhibitor of hexokinase, the first enzyme in the glycolytic pathway. In contrast, because of its structural similarity to mannose, 2-DG is known to be more effective than 2-FDG in interfering with N-linked glycosylation. Recently, it was reported that 2-DG, at a relatively low dose, is toxic to certain tumor cells, even under aerobic conditions, whereas 2-FDG is not. These results indicate that the toxic effects of 2-DG in selected tumor cells under aerobic conditions is through inhibition of glycosylation rather than glycolysis. The intention of this minireview is to discuss the effects and potential clinical impact of 2-DG and 2-FDG as antitumor agents and to clarify the differential mechanisms by which these two glucose analogues produce toxicity in tumor cells growing under anaerobic or aerobic conditions.


Assuntos
Hipóxia Celular/fisiologia , Desoxiglucose/toxicidade , Neoplasias/fisiopatologia , Anaerobiose , Glicólise , Humanos , Modelos Biológicos , Neoplasias/patologia , Consumo de Oxigênio/efeitos dos fármacos
11.
Cancer Chemother Pharmacol ; 58(6): 725-34, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16555088

RESUMO

PURPOSE: Since 2-deoxy-D-glucose (2-DG) is currently in phase I clinical trials to selectively target slow-growing hypoxic tumor cells, 2-halogenated D-glucose analogs were synthesized for improved activity. Given the fact that 2-DG competes with D-glucose for binding to hexokinase, in silico modeling of molecular interactions between hexokinase I and these new analogs was used to determine whether binding energies correlate with biological effects, i.e. inhibition of glycolysis and subsequent toxicity in hypoxic tumor cells. METHODS AND RESULTS: Using a QSAR-like approach along with a flexible docking strategy, it was determined that the binding affinities of the analogs to hexokinase I decrease as a function of increasing halogen size as follows: 2-fluoro-2-deoxy-D-glucose (2-FG) > 2-chloro-2-deoxy-D-glucose (2-CG) > 2-bromo-2-deoxy-D-glucose (2-BG). Furthermore, D-glucose was found to have the highest affinity followed by 2-FG and 2-DG, respectively. Similarly, flow cytometry and trypan blue exclusion assays showed that the efficacy of the halogenated analogs in preferentially inhibiting growth and killing hypoxic vs. aerobic cells increases as a function of their relative binding affinities. These results correlate with the inhibition of glycolysis as measured by lactate inhibition, i.e. ID50 1 mM for 2-FG, 6 mM for 2-CG and > 6 mM for 2-BG. Moreover, 2-FG was found to be more potent than 2-DG for both glycolytic inhibition and cytotoxicity. CONCLUSIONS: Overall, our in vitro results suggest that 2-FG is more potent than 2-DG in killing hypoxic tumor cells, and therefore may be more clinically effective when combined with standard chemotherapeutic protocols.


Assuntos
Proliferação de Células/efeitos dos fármacos , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Halogênios/química , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxiglucose/análogos & derivados , Desoxiglucose/química , Desenho de Fármacos , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/farmacologia , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/química , Glucose-6-Fosfato/metabolismo , Hexoquinase/química , Hexoquinase/metabolismo , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Termodinâmica
12.
Expert Rev Gastroenterol Hepatol ; 10(3): 301-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26560854

RESUMO

One of the key factors that correlates with poor survival of patients with pancreatic cancer is the extent of hypoxic areas within the tumor tissue. The adaptation of pancreatic cancer cells to limited oxygen delivery promotes the induction of an invasive and treatment-resistant phenotype, triggering metastases at an early stage of tumor development, which resist in most cases adjuvant therapies following tumor resection. In this article, the authors summarize the evidence demonstrating the significance of hypoxia in pancreatic cancer pathogenesis and discuss the possible hypoxia-induced mechanisms underlying its aggressive nature. We then conclude with promising strategies that target hypoxia-adapted pancreatic cancer cells.


Assuntos
Oxigênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Hipóxia Celular , Desenho de Fármacos , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fenótipo , Transdução de Sinais
13.
Oncotarget ; 7(24): 36461-36473, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27183907

RESUMO

Unregulated growth and replication as well as an abnormal microenvironment, leads to elevated levels of stress which is a common trait of cancer. By inducing both energy and endoplasmic reticulum (ER) stress, 2-Deoxy-glucose (2-DG) is particularly well-suited to take advantage of the therapeutic window that heightened stress in tumors provides. Under hypoxia, blocking glycolysis with 2-DG leads to significant lowering of ATP resulting in energy stress and cell death in numerous carcinoma cell types. In contrast, under normoxia, 2-DG at a low-concentration is not toxic in most carcinomas tested, but induces growth inhibition, which is primarily due to ER stress. Here we find a synergistic toxic effect in several tumor cell lines in vitro combining 2-DG with fenofibrate (FF), a drug that has been safely used for over 40 years to lower cholesterol in patients. This combination induces much greater energy stress than either agent alone, as measured by ATP reduction, increased p-AMPK and downregulation of mTOR. Inhibition of mTOR results in blockage of GRP78 a critical component of the unfolded protein response which we speculate leads to greater ER stress as observed by increased p-eIF2α. Moreover, to avoid an insulin response and adsorption by the liver, 2-DG is delivered by slow-release pump yielding significant anti-tumor control when combined with FF. Our results provide promise for developing this combination clinically and others that combine 2-DG with agents that act synergistically to selectively increase energy and ER stress to a level that is toxic to numerous tumor cell types.


Assuntos
Apoptose/efeitos dos fármacos , Desoxiglucose/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fenofibrato/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Hipolipemiantes/farmacologia , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Clin Genitourin Cancer ; 13(5): 410-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25862322

RESUMO

Despite recent advances in the identification of genomic alterations that lead to urothelial oncogenesis in vitro, patients with advanced urothelial carcinomas continue to have poor clinical outcomes. In the present review, we focus on targeted therapies that have yielded the most promising results alone or combined with traditional chemotherapy, including the antiangiogenesis agent bevacizumab, the human epidermal growth factor receptor 2 antibody trastuzumab, and the tyrosine kinase inhibitor cabozantinib. We also describe ongoing and developing clinical trials that use innovative approaches, including dose-dense scheduling of singular chemotherapy combinations, prospective screening of tumor tissues for mutational targets and biomarkers to predict chemosensitivity before the determination of the therapeutic regimen, and novel agents that target proteins in the immune checkpoint regulation pathway (programmed cell death protein 1 [PD-1] and anti-PD-ligand 1) that have shown significant potential in preclinical models and early clinical trials. New agents and targeted therapies, alone or combined with traditional chemotherapy, will only be validated through accrual to developing clinical trials that aim to translate these therapies into individualized treatments and improved survival rates in urothelial carcinoma.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Urológicas/tratamento farmacológico , Anilidas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Ensaios Clínicos como Assunto , Humanos , Medicina de Precisão , Piridinas/uso terapêutico , Trastuzumab/uso terapêutico , Neoplasias Urológicas/genética , Neoplasias Urológicas/patologia , Urotélio/efeitos dos fármacos , Urotélio/patologia
15.
Hepat Oncol ; 2(1): 39-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25685318

RESUMO

Biliary tract carcinoma is a rare malignancy. We performed a comprehensive analysis of published prospective clinical trials in advanced biliary tract carcinoma in an attempt to identify active regimens in this setting. We searched PubMed and abstracts presented at the American Society of Clinical Oncology, Gastrointestinal Cancer Symposium, European Society of Medical Oncology and European Cancer Organization conferences for clinical trials in this disease. We found 83 trials. The effect of gemcitabine on overall survival benefit showed a strong trend (p = 0.014) and an improvement in progression-free survival (p = 0.003). Gemcitabine-based regimens containing 5-fluorouracil showed a trend toward an improved overall survival (p = 0.047) relative to platinum agents. Our findings support gemcitabine as the chemotherapy backbone for the treatment of patients with cholangiocarcinoma. Gemcitabine plus 5-fluorouracil combinations warrant further investigations.

16.
Ulus Travma Acil Cerrahi Derg ; 9(1): 37-44, 2003 Jan.
Artigo em Turco | MEDLINE | ID: mdl-12587053

RESUMO

BACKGROUND: In our study we aimed to evaluate, retrospectively, the bleeding and the Venousthrombo Emblism (VTE) complications in trauma patients in Intensive Care Unit (ICU) under the prophylaxis of enoxaparin sodium. The results will guide us to establish a protocol for use of Enoxaparin Sodium in trauma patients. In trauma patients, Low Molecular Weight Heparine (LMWH) has better efficiency than unfractionned heparin and intermittant pneumatic compression for VTE prophylaxis. METHODS: 457 polytraumatized patients treated in ICU are included to the study group. All patients received 40 mg/day of Enoxaparin Sodium. Severity of trauma was assessed with Apache II Scoring System and bleeding diagnosed by observing a sudden drop of 2 g/dl in hemoglobin concentration and pulmonary embolism was diagnosed by a sudden change in blood gases and deterioration of the clinical outlook which was confirmed by a spiral CT scan. Statistical correlation was made by Pearson's correlation test. RESULTS: Mean Apache II score was 13.8 with a total mortality of 41%. 42 patients (9,2%) had bleeding due to Enoxiparine Sodium prophylaxis. 12 patients (2,6%) had pulmonary embolism and 8 of them (1,7%) had died. CONCLUSION: Verified by the literature and our study, LMWH prophylaxis significantly reduces the Pulmoner Embolism (PE) incidence in polytraumatized patients (p<0,05). On the other hand, the bleeding risk has slightly increased without showing any significance (p>0.05). Prophylaxis with LMWH is safe and efficient in polytraumatized ICU patients.


Assuntos
Anticoagulantes/efeitos adversos , Enoxaparina/efeitos adversos , Hemorragia/mortalidade , Traumatismo Múltiplo/patologia , Embolia Pulmonar/mortalidade , Trombose Venosa/prevenção & controle , APACHE , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Hemorragia/induzido quimicamente , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Estudos Retrospectivos , Turquia/epidemiologia
17.
Cancer Chemother Pharmacol ; 73(2): 417-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24352250

RESUMO

PURPOSE: Although cisplatin is the drug of choice in treating lung cancer patients, relapse and resistance is a common drawback to its clinical effectiveness. Based on cisplatin's reported ability to interfere with numerous cellular components, including mitochondria, we probed alterations in metabolism in cisplatin-resistant tumor cell lines to reveal targets for overcoming this important form of resistance. METHODS: Cisplatin-resistant lung and ovarian cancer cell lines were used to evaluate the efficacy of metabolic inhibitors for selectively targeting cisplatin-resistant cells under varying oxygen conditions. RESULTS: Three cisplatin-resistant cancer cell lines expressed lower HKII protein when compared to the respective cisplatin-sensitive cancer cell lines from which they were derived. Under anaerobic and hypoxic conditions, treatment with the glycolytic inhibitors 2-deoxyglucose (2-DG) and 2-fluorodeoxyglucose (2-FDG) correlated with increased cytotoxicity and more pronounced decreases in lactate production in cisplatin-resistant cells, indicating a greater blockage of glycolysis. Knockdown of HKI or HKII with siRNA in the parental lung cancer cell lines led to increased 2-FDG-induced cell death under anaerobic conditions. Under normal oxygen conditions, blockage of either fatty acid oxidation or deprivation of glutamine resulted in cell death in cisplatin-resistant lung cancer cell lines. CONCLUSIONS: Altered hexokinase levels in cisplatin-resistant cancer cell lines leads to increased sensitivity to glycolytic inhibition under anaerobic conditions, whereas under normoxic conditions, blockage of either fatty acid oxidation or deprivation of glutamine leads to cell death. These findings may be clinically applicable when considering cisplatin resistance.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Desoxiglucose/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Glicólise/efeitos dos fármacos , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção
18.
Cancer Chemother Pharmacol ; 73(2): 349-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292700

RESUMO

BACKGROUND: As tumors evolve, they upregulate glucose metabolism while also encountering intermittent periods of glucose deprivation. Here, we investigate mechanisms by which pancreatic cancer cells respond to therapeutic (2-deoxy-D-glucose, 2-DG) and physiologic (glucose starvation, GS) forms of glucose restriction. METHODS: From a tumor cell line (1420) that is unusually sensitive to 2-DG under normoxia, low (14DG2)- and high (14DG5)-dose resistant cell lines were selected and used to probe the metabolic pathways involved with their response to different forms of glucose deprivation. RESULTS: Muted induction of the unfolded protein response was found to correlate with resistance to 2-DG. Additionally, 14DG2 displayed reduced 2-DG uptake, while 14DG5 was cross-resistant to tunicamycin, suggesting it has enhanced ability to manage glycosylation defects. Conversely, 2-DG-resistant cell lines were more sensitive than their parental cell line to GS, which coincided with lowered levels of glycogen phosphorylase (PYGB) and reduced breakdown of glycogen to glucose in the 2-DG-resistant cell lines. Moreover, by inhibiting PYGB in the parental cell line, sensitivity to GS was increased. CONCLUSIONS: Overall, the data demonstrate that the manner in which glucose is restricted in tumor cells, i.e., therapeutic or physiologic, leads to differential biological responses involving distinct glucose metabolic pathways. Moreover, in evolving tumors where glucose restriction occurs, the identification of PYGB as a metabolic target may have clinical application.


Assuntos
Desoxiglucose/farmacologia , Glucose/deficiência , Glucose/metabolismo , Glicogênio Fosforilase/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Glicólise , Humanos , Isoenzimas , Neoplasias Pancreáticas/enzimologia , Resposta a Proteínas não Dobradas
19.
Cancer Chemother Pharmacol ; 72(1): 251-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23700291

RESUMO

BACKGROUND: Inhibition of glucose metabolism has recently become an attractive target for cancer treatment. Accordingly, since 2-deoxyglucose (2-DG) competes effectively with glucose, it has come under increasing scrutiny as a therapeutic agent. The initial response of tumor cells to 2-DG is growth inhibition, which is thought to conserve energy and consequently protect cells from its ATP-lowering effects as a glycolytic inhibitor. However, since 2-DG also mimics mannose and thereby interferes with N-linked glycosylation, the question is raised of how this sugar analog inhibits tumor cell growth and whether the mechanism by which it protects cells can be manipulated to convert 2-DG-induced growth inhibition to cell death. METHODS: Cell growth and death were measured via counting viable and dead cells based on trypan blue exclusion. Markers of ATP reduction and the unfolded protein response (UPR) were detected by Western blot. Protein functions were manipulated through chemical compounds, siRNA and the use of gene-specific wild-type and knock-out mouse embryonic fibroblasts (MEFs). RESULTS: At 2-DG concentrations that can be achieved in human plasma without causing significant side effects, we find (a) It induces growth inhibition predominantly by interference with glycosylation, which leads to accumulation of unfolded proteins in the endoplasmic reticulum activating the UPR; (b) Inhibition of PERK (but not ATF6 or IRE1), a major component of the UPR, leads to conversion of 2-DG-induced growth inhibition to cell death and (c) secondarily to PERK, inhibition of GCN2, a kinase that is activated in response to low intracellular glutamine, increases 2-DG's cytotoxic effects in PERK -/- MEFs. CONCLUSIONS: Overall, these findings present a novel anticancer strategy that can be translated into therapeutic gain as they uncover the metabolic target PERK, and to a lesser degree GCN2, that when inhibited convert 2-DG's static effect to a toxic one in tumor cells growing under normoxia.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxiglucose/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , Fator 6 Ativador da Transcrição/antagonistas & inibidores , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glicosilação/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
Cancer Chemother Pharmacol ; 71(2): 523-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23228990

RESUMO

PURPOSE: This phase I trial was initiated to evaluate the safety, pharmacokinetics (PK) and maximum tolerated dose (MTD) of the glycolytic inhibitor, 2-deoxy-D-glucose (2DG) in combination with docetaxel, in patients with advanced solid tumors. METHODS: A modified accelerated titration design was used. 2DG was administered orally once daily for 7 days every other week starting at a dose of 2 mg/kg and docetaxel was administered intravenously at 30 mg/m(2) for 3 of every 4 weeks beginning on day 1 of week 2. Following the completion of dose escalation, cohorts of patients were then treated with 2DG for 21 days or every day of each 4-week cycle for up to 12 cycles. RESULTS: Thirty-four patients were enrolled: 21 on every other week, 6 on a 21 of 28-day cycle and 7 on the continuous 2DG dosing schedule. There were no dose-limiting toxicities which met the MTD criteria. The most common adverse events were fatigue, sweating, dizziness and nausea mimicking the hypoglycemic symptoms expected from 2DG administration. Therefore, 63 mg/kg was selected as the clinically tolerable dose. The most significant adverse effects noted at 63-88 mg/kg doses were reversible hyperglycemia (100 %), gastrointestinal bleeding (6 %) and reversible grade 3 QTc prolongation (22 %). Eleven patients (32 %) had stable disease, 1 patient (3 %) partial response and 22 patients (66 %) progressive disease as their best response. There was no PK interaction between 2DG and docetaxel. CONCLUSION: The recommended dose of 2DG in combination with weekly docetaxel is 63 mg/kg/day with tolerable adverse effects.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxiglucose/administração & dosagem , Desoxiglucose/uso terapêutico , Neoplasias/tratamento farmacológico , Taxoides/administração & dosagem , Taxoides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Glicemia/análise , Desoxiglucose/efeitos adversos , Docetaxel , Eletrocardiografia/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxoides/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA