Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 220: 115230, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623681

RESUMO

Cambodia's 16.5 million people are exposed to air pollution in excess of World Health Organisation guidelines. The Royal Government of Cambodia has regulated air pollutant emissions and concentrations since 2000, but rapid economic growth and energy consumption means air pollution continues to impact human health. In December 2021, the Ministry of Environment of Cambodia published Cambodia's first Clean Air Plan that outlines actions to reduce air pollutant emissions over the next decade. This work presents the quantitative air pollution mitigation assessment underpinning the identification and evaluation of measures included in Cambodia's Clean Air Plan. Historic emissions of particulate matter (PM2.5, black carbon, organic carbon) and gaseous (nitrogen oxides, volatile organic compounds, sulphur dioxide, ammonia, and carbon monoxide) air pollutants are quantified between 2010 and 2015, and projected to 2030 for a baseline scenario. Mitigation scenarios reflecting implementation of 14 measures included in Cambodia's Clean Air Plan were modelled, to quantify the national reduction in emissions, from which the reduction in ambient PM2.5 exposure and attributable health burdens were estimated. In 2015, the residential, transport, and waste sectors contribute the largest fraction of national total air pollutant emissions. Without emission reduction measures, air pollutant emissions could increase by between 50 and 150% in 2030 compared to 2015 levels, predominantly due to increases in transport emissions. The implementation of the 14 mitigation measures could substantially reduce emissions of all air pollutants, by between 60 and 80% in 2030 compared to the baseline. This reduction in emissions was estimated to avoid approximately 900 (95% C.I.: 530-1200) premature deaths per year in 2030 compared to the baseline scenario. In addition to improving air pollution and public health, Cambodia's Clean Air Plan could also to lead to additional benefits, including a 19% reduction in carbon dioxide emissions, simultaneously contributing to Cambodia's climate change goals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Camboja , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Dióxido de Enxofre
3.
BMJ Glob Health ; 7(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35701014

RESUMO

This article argues that human health has become a key consideration in recent global reports on climate change and biodiversity produced by various international organisations; however, greater attention must be given to the unequal health impacts of climate change and biodiversity loss around the world and the different health adaptation measures that are urgently required.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Biodiversidade , Humanos
4.
Sci Total Environ ; 844: 157107, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35810891

RESUMO

Togo, in west Africa, is vulnerable to the impacts of climate change, but has made a negligible contribution to causing it. Togo ratified the Paris Agreement in 2017, committing to submit Nationally Determined Contributions (NDCs) that outline Togo's climate change mitigation commitment. Togo's capital, Lomé, as well as other areas of Togo have ambient air pollutant levels exceeding World Health Organisation guidelines for human health protection, and 91 % of Togolese households cook using solid biomass, elevating household air pollution exposure. In Togo's updated NDC, submitted in 2021, Togo acknowledges the importance and opportunity of achieving international climate change mitigation targets in ways that improve air quality and achieve health benefits for Togo's citizens. The aim of this work is to evaluate priority mitigation measures in an integrated assessment of air pollutant, Short-Lived Climate Pollutant (SLCP) and Greenhouse Gas (GHG) emissions to identify their effectiveness in simultaneously reducing air pollution and Togo's contribution to climate change. The mitigation assessment quantifies emissions for Togo and Grand Lomé from all major source sectors for historical years between 2010 and 2018, for a baseline projection to 2030 and for mitigation scenarios evaluating ten mitigation measures. The assessment estimates that Togo emitted ~21 million tonnes of GHG emissions in 2018, predominantly from the energy and Agriculture, Forestry and Other Land Use sectors. GHG emissions are projected to increase 42 % to 30 million tonnes in 2030 without implementation of mitigation policies and measures. The implementation of the ten identified priority mitigation measures could reduce GHG emissions by ~20 % in 2030 compared to the baseline, while SLCPs and air pollutants were estimated to be reduced more, with a more than 75 % reduction in black carbon emissions in 2030. This work therefore provides a clear pathway by which Togo can reduce its already small contribution to climate change while simultaneously achieving local benefits for air quality and human health in Togo and Grand Lomé.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Mudança Climática , Humanos , Material Particulado/análise , Togo
5.
Environ Sci Technol ; 45(6): 2471-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319814

RESUMO

It is expected that biodiesel production in the EU will remain the dominant contributor as part of a 10% minimum binding target for biofuel in transportation fuel by 2020 within the 20% renewable energy target in the overall EU energy mix. Life cycle assessments (LCA) of biodiesel to evaluate its environmental impacts have, however, remained questionable, mainly because of the adoption of a traditional process analysis approach resulting in system boundary truncation and because of issues regarding the impacts of land use change and N(2)O emissions from fertilizer application. In this study, a hybrid LCA methodology is used to evaluate the life cycle CO(2) equivalent emissions of rape methyl ester (RME) biodiesel. The methodology uses input-output analysis to estimate upstream indirect emissions in order to complement traditional process LCA in a hybrid framework. It was estimated that traditional LCA accounted for 2.7 kg CO(2)-eq per kg of RME or 36.6% of total life cycle emissions of the RME supply chin. Further to the inclusion of upstream indirect impacts in the LCA system (which accounted for 23% of the total life cycle emissions), emissions due to direct land use change (6%) and indirect land use change (16.5%) and N(2)O emissions from fertilizer applications (17.9%) were also calculated. Structural path analysis is used to decompose upstream indirect emissions paths of the biodiesel supply chain in order to identify, quantify, and rank high carbon emissions paths or 'hot-spots' in the biodiesel supply chain. It was shown, for instance, that inputs from the 'Other Chemical Products' sector (identified as phosphoric acid, H(3)PO(4)) into the biodiesel production process represented the highest carbon emission path (or hot-spot) with 5.35% of total upstream indirect emissions of the RME biodiesel supply chain.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis/economia , Dióxido de Carbono/análise , Pegada de Carbono/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , União Europeia , Modelos Estruturais , Dióxido de Nitrogênio/análise
6.
Environ Int ; 145: 106155, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33027737

RESUMO

Low- and middle-income countries have the largest health burdens associated with air pollution exposure, and are particularly vulnerable to climate change impacts. Substantial opportunities have been identified to simultaneously improve air quality and mitigate climate change due to overlapping sources of greenhouse gas and air pollutant emissions and because a subset of pollutants, short-lived climate pollutants (SLCPs), directly contribute to both impacts. However, planners in low- and middle-income countries often lack practical tools to quantify the air pollution and climate change impacts of different policies and measures. This paper presents a modelling framework implemented in the Low Emissions Analysis Platform - Integrated Benefits Calculator (LEAP-IBC) tool to develop integrated strategies to improve air quality, human health and mitigate climate change. The framework estimates emissions of greenhouse gases, SLCPs and air pollutants for historical years, and future projections for baseline and mitigation scenarios. These emissions are then used to quantify i) population-weighted annual average ambient PM2.5 concentrations across the target country, ii) household PM2.5 exposure of different population groups living in households cooking using different fuels/technologies and iii) radiative forcing from all emissions. Health impacts (premature mortality) attributable to ambient and household PM2.5 exposure and changes in global average temperature change are then estimated. This framework is applied in Bangladesh to evaluate the air quality and climate change benefits from implementation of Bangladesh's Nationally Determined Contribution (NDC) and National Action Plan to reduce SLCPs. Results show that the measures included to reduce GHGs in Bangladesh's NDC also have substantial benefits for air quality and human health. Full implementation of Bangladesh's NDC, and National SLCP Plan would reduce carbon dioxide, methane, black carbon and primary PM2.5 emissions by 25%, 34%, 46% and 45%, respectively in 2030 compared to a baseline scenario. These emission reductions could reduce population-weighted ambient PM2.5 concentrations in Bangladesh by 18% in 2030, and avoid approximately 12,000 and 100,000 premature deaths attributable to ambient and household PM2.5 exposures, respectively, in 2030. As countries are simultaneously planning to achieve the climate goals in the Paris Agreement, improve air quality to reduce health impacts and achieve the Sustainable Development Goals, the LEAP-IBC tool provides a practical framework by which planners can develop integrated strategies, achieving multiple air quality and climate benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Bangladesh , Mudança Climática , Humanos , Paris , Material Particulado/análise
7.
Ambio ; 37(4): 295-303, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18686510

RESUMO

Exceedance of steady-state critical loads for soil acidification is consistently found in southern China and parts of SE Asia, but there is no evidence of impacts outside of China. This study describes a methodology for calculating the time to effects for soils sensitive to acidic deposition in Asia under potential future sulfur (S), nitrogen (N), and calcium (Ca) emission scenarios. The calculations are matched to data availability in Asia to produce regional-scale maps that provide estimates of the time (y) it will take for soil base saturation to reach a critical limit of 20% in response to acidic inputs. The results show that sensitive soil types in areas of South, Southeast, and East Asia, including parts of southern China, Burma, Hainan, Laos, Thailand, Vietnam, and the Western Ghats of India, may acidify to a significant degree on a 0-50 y timescale, depending on individual site management and abiotic and biotic characteristics. To make a clearer assessment of risk, site-specific data are required for soil chemistry and deposition (especially base cation deposition); S and N retention in soils and ecosystems; and biomass harvesting and weathering rates from sites across Asia representative of different soil and vegetation types and management regimes. National and regional assessments of soils using the simple methods described in this paper can provide an appreciation of the time dimension of soil acidification-related impacts and should be useful in planning further studies and, possibly, implementing measures to reduce risks of acidification.


Assuntos
Ácidos , Solo/análise , Ásia , Atmosfera , Modelos Teóricos
8.
Environ Health Perspect ; 126(10): 107004, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30392403

RESUMO

BACKGROUND: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. OBJECTIVES: We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate matter ([Formula: see text]), ozone, and nitrogen dioxide ([Formula: see text]) concentrations. METHODS: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence, and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using published survey data. RESULTS: We estimated that 9­23 million and 5­10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and [Formula: see text], respectively, representing 8­20% and 4­9% of the annual number of global visits, respectively. The range reflects the application of central risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for [Formula: see text] and 73% of ozone and [Formula: see text] impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and [Formula: see text] (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India. CONCLUSIONS: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also identified key uncertainties and data limitations to be addressed to enable refined estimation. https://doi.org/10.1289/EHP3766.


Assuntos
Poluição do Ar/efeitos adversos , Asma/epidemiologia , Dióxido de Nitrogênio/efeitos adversos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Humanos , Incidência , Ozônio/química , Tamanho da Partícula , Fatores de Risco
9.
Environ Int ; 101: 173-182, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196630

RESUMO

Reduction of preterm births (<37 completed weeks of gestation) would substantially reduce neonatal and infant mortality, and deleterious health effects in survivors. Maternal fine particulate matter (PM2.5) exposure has been identified as a possible risk factor contributing to preterm birth. The aim of this study was to produce the first estimates of ambient PM2.5-associated preterm births for 183 individual countries and globally. To do this, national, population-weighted, annual average ambient PM2.5 concentration, preterm birth rate and number of livebirths were combined to calculate the number of PM2.5-associated preterm births in 2010 for 183 countries. Uncertainty was quantified using Monte-Carlo simulations, and analyses were undertaken to investigate the sensitivity of PM2.5-associated preterm birth estimates to assumptions about the shape of the concentration-response function at low and high PM2.5 exposures, inclusion of provider-initiated preterm births, and exposure to indoor air pollution. Globally, in 2010, the number of PM2.5-associated preterm births was estimated as 2.7 million (1.8-3.5 million, 18% (12-24%) of total preterm births globally) with a low concentration cut-off (LCC) set at 10µgm-3, and 3.4 million (2.4-4.2 million, 23% (16-28%)) with a LCC of 4.3µgm-3. South and East Asia, North Africa/Middle East and West sub-Saharan Africa had the largest contribution to the global total, and the largest percentage of preterm births associated with PM2.5. Sensitivity analyses showed that PM2.5-associated preterm birth estimates were 24% lower when provider-initiated preterm births were excluded, 38-51% lower when risk was confined to the PM2.5 exposure range in the studies used to derive the effect estimate, and 56% lower when mothers who live in households that cook with solid fuels (and whose personal PM2.5 exposure is likely dominated by indoor air pollution) were excluded. The concentration-response function applied here derives from a meta-analysis of studies, most of which were conducted in the US and Europe, and its application to the areas of the world where we estimate the greatest effects on preterm births remains uncertain. Nevertheless, the substantial percentage of preterm births estimated to be associated with anthropogenic PM2.5 (18% (13%-24%) of total preterm births globally) indicates that reduction of maternal PM2.5 exposure through emission reduction strategies should be considered alongside mitigation of other risk factors associated with preterm births.


Assuntos
Poluentes Atmosféricos/análise , Exposição Materna/efeitos adversos , Material Particulado/análise , Nascimento Prematuro/epidemiologia , Poluição do Ar em Ambientes Fechados/análise , Culinária , Feminino , Saúde Global , Humanos , Recém-Nascido , Masculino , Gravidez , Nascimento Prematuro/induzido quimicamente , Fatores de Risco
10.
Environ Health Perspect ; 125(8): 087021, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28858826

RESUMO

BACKGROUND: Relative risk estimates for long-term ozone (O3) exposure and respiratory mortality from the American Cancer Society Cancer Prevention Study II (ACS CPS-II) cohort have been used to estimate global O3-attributable mortality in adults. Updated relative risk estimates are now available for the same cohort based on an expanded study population with longer follow-up. OBJECTIVES: We estimated the global burden and spatial distribution of respiratory mortality attributable to long-term O3 exposure in adults ≥30y of age using updated effect estimates from the ACS CPS-II cohort. METHODS: We used GEOS-Chem simulations (2×2.5º grid resolution) to estimate annual O3 exposures, and estimated total respiratory deaths in 2010 that were attributable to long-term annual O3 exposure based on the updated relative risk estimates and minimum risk thresholds set at the minimum or fifth percentile of O3 exposure in the most recent CPS-II analysis. These estimates were compared with attributable mortality based on the earlier CPS-II analysis, using 6-mo average exposures and risk thresholds corresponding to the minimum or fifth percentile of O3 exposure in the earlier study population. RESULTS: We estimated 1.04-1.23 million respiratory deaths in adults attributable to O3 exposures using the updated relative risk estimate and exposure parameters, compared with 0.40-0.55 million respiratory deaths attributable to O3 exposures based on the earlier CPS-II risk estimate and parameters. Increases in estimated attributable mortality were larger in northern India, southeast China, and Pakistan than in Europe, eastern United States, and northeast China. CONCLUSIONS: These findings suggest that the potential magnitude of health benefits of air quality policies targeting O3, health co-benefits of climate mitigation policies, and health implications of climate change-driven changes in O3 concentrations, are larger than previously thought. https://doi.org/10.1289/EHP1390.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Ozônio/toxicidade , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Saúde Global , Humanos , Pessoa de Meia-Idade , Risco
12.
Water Sci Technol ; 45(8): 243-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12019830

RESUMO

The Young Water Professionals Symposium discussed the nature of globalisation as it affects water and water professionals. Globalisation processes can either encourage or cure the problems of scarcity and marginalisation. Different levels of development and rates of progress reinforce the need for diverse thinking to tackle these local variations within the global context. A significant aspect is a change in roles and responsibilities for the water professional - to be less confined to the purely technical and more cooperative across traditional boundaries. To enable water professionals to fulfil these new roles education must be transformed and intellectual barriers overcome. In this way globalisation processes can be made to work for water security for the new century.


Assuntos
Meio Ambiente , Relações Interprofissionais , Competência Profissional , Abastecimento de Água , Conservação dos Recursos Naturais , Humanos , Formulação de Políticas , Poluição da Água/prevenção & controle
13.
Environ Health Perspect ; 120(6): 831-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22418651

RESUMO

BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM(2.5)), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of PM(2.5) and ozone using two composition-climate models, and calculated associated changes in premature PM(2.5)- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS: We estimated that, for PM(2.5) and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM(2.5) relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.


Assuntos
Poluição do Ar/prevenção & controle , Mudança Climática , Exposição Ambiental , Metano/análise , Ozônio/análise , Material Particulado/análise , Saúde Pública/estatística & dados numéricos , Simulação por Computador , Humanos , Metano/efeitos adversos , Modelos Teóricos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Fuligem
14.
Science ; 335(6065): 183-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22246768

RESUMO

Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Mudança Climática , Abastecimento de Alimentos , Saúde , Metano , Ozônio , Fuligem , Aerossóis , Poluentes Atmosféricos/análise , Simulação por Computador , Análise Custo-Benefício , Humanos , Metano/análise , Mortalidade Prematura , Ozônio/análise , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA