Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502287

RESUMO

Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM-CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT-GM-CSF-danger signal system by means of artificial cancer specific promoters or a modified delivery system.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Imunoterapia/métodos , Neoplasias/terapia , Animais , Vacinas Anticâncer/farmacologia , Genes Transgênicos Suicidas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Pró-Fármacos/farmacologia , Timidina Quinase/genética , Timidina Quinase/farmacologia
2.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847094

RESUMO

Tumor is a complex system of interactions between cancer cells and other cells of the tumor microenvironment. The cancer-associated fibroblasts (CAFs) of the tumor microenvironment remain in close contact with the cancer cells and play an important role in cancer progression. Genetically, CAFs are more stable than cancer cells, making them an attractive target for genetic modification in gene therapy. However, the efficiency of various promoters for transgene expression in fibroblasts is scarcely studied. We performed a comparative analysis of transgene long-term expression under the control of strong cytomegalovirus promoter (pCMV), constitutive cell promoter of the PCNA gene (pPCNA), and the potentially fibroblast-specific promoter of the IGFBP2 gene (pIGFBP2). In vitro expression of the transgene under the control of pCMV in fibroblasts was decreased soon after transduction, whereas the expression was more stable under the control of pIGFBP2 and pPCNA. The efficiency of transgene expression was higher under pPCNA than that under pIGFBP2. Additionally, in a mouse model, pPCNA provided more stable and increased transgene expression in fibroblasts as compared to that under pCMV. We conclude that PCNA promoter is the most efficient for long-term expression of transgenes in fibroblasts both in vitro and in vivo.


Assuntos
Fibroblastos/metabolismo , Vetores Genéticos , Neoplasias/genética , Regiões Promotoras Genéticas , Transgenes/genética , Animais , Células 3T3 BALB , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Clonagem Molecular/métodos , Citomegalovirus/genética , Modelos Animais de Doenças , Fibroblastos/transplante , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células NIH 3T3 , Neoplasias/metabolismo , Neoplasias/patologia , Transplante Isogênico
3.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143259

RESUMO

Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/patologia , Colágeno/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/patologia , Células Híbridas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/metabolismo , Proliferação de Células , Técnicas de Cocultura , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Matriz Extracelular , Feminino , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células Híbridas/metabolismo , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Immunol ; 15: 1410564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007148

RESUMO

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Assuntos
Imunoterapia , Ligante OX40 , Animais , Ligante OX40/genética , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferência de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Polietilenoimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Polietilenoglicóis/química
5.
Front Mol Biosci ; 10: 1111511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825204

RESUMO

Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.

6.
Cancers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34503200

RESUMO

Intercellular interactions involving adhesion factors are key operators in cancer progression. In particular, these factors are responsible for facilitating cell migration and metastasis. Strengthening of adhesion between tumor cells and surrounding cells or extracellular matrix (ECM), may provide a way to inhibit tumor cell migration. Recently, we demonstrated that PDX1 ectopic expression results in the reduction of pancreatic cancer line PANC-1 cell motility in vitro and in vivo, and we now provide experimental data confirming the hypothesis that suppression of migration may be related to the effect of PDX1 on cell adhesion. Cell migration analyses demonstrated decreased motility of pancreatic Colo357 and PANC-1 cell lines expressing PDX1. We observed decreased expression levels of genes associated with promoting cell migration and increased expression of genes negatively affecting cell motility. Expression of the EMT regulator genes was only mildly induced in cells expressing PDX1 during the simulation of the epithelial-mesenchymal transition (EMT) by the addition of TGFß1 to the medium. PDX1-expressing cancer cell lines showed increased cell adhesion to collagen type I, fibronectin, and poly-lysine. We conclude that ectopic expression of PDX1 reduces the migration potential of cancer cells, by increasing the adhesive properties of cells and reducing the sensitivity to TGFß1-induced EMT.

7.
Polymers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751200

RESUMO

Nuclear proteins, like histone H2A, are promising non-viral carriers for gene delivery since they are biocompatible, biodegradable, bear intrinsic nuclear localization signal, and are easy to modify. The addition of surface-protein-binding ligand to histone H2A may increase its DNA delivery efficiency. Tumor microenvironment (TME) is a promising target for gene therapy since its surface protein repertoire is more stable than that of cancer cells. Cancer-associated fibroblasts (CAFs) are important components of TME, and one of their surface markers is beta-type platelet-derived growth factor receptor (PDGFRß). In this study, we fused histone H2A with PDGFRß-binding peptide, YG2, to create a novel non-viral fibroblast-targeting DNA carrier, H2A-YG2. The transfection efficiency of histone complexes with pDNA encoding a bicistronic reporter (enhanced green fluorescent protein, EGFP, and firefly luciferase) in PDGFRß-positive and PDGFRß-negative cells was estimated by luciferase assay and flow cytometry. The luciferase activity, percentage of transfected cells, and overall EGFP fluorescence were increased due to histone modification with YG2 only in PDGFRß-positive cells. We also estimated the internalization efficiency of DNA-carrier complexes using tetramethyl-rhodamine-labeled pDNA. The ligand fusion increased DNA internalization only in the PDGFRß-positive cells. In conclusion, we demonstrated that the H2A-YG2 carrier targeted gene delivery to PDGFRß-positive tumor stromal cells.

8.
Biomaterials ; 34(38): 10209-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075405

RESUMO

Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI-PEG-MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 h after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 µm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated not more than 3 µm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent (123)I(-) intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8% ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT.


Assuntos
Melanoma/metabolismo , Nanopartículas/química , Polímeros/química , Receptor Tipo 1 de Melanocortina/metabolismo , Animais , Linhagem Celular , Técnicas de Transferência de Genes , Melanoma/terapia , Camundongos , Microscopia Confocal , Receptor Tipo 1 de Melanocortina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA