Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(16): 6825-6832, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35801941

RESUMO

A photoreceptor on the retina acts as an optical waveguide to transfer an individual photonic signal to the cell inside, which is determined by the refractive index of internal materials. Under the photoactivation of photoreceptors making conformational and chemical variation in a visual cell, the optical signal modulation is demonstrated using an artificial photoreceptor-based waveguide with a controlling beam refraction. Two types of nanodiscs are made of human photoreceptor proteins, short-wavelength-sensitive opsin and rhodopsin, with spectral sensitivity. The refractive index and nonlinear features of those two photosensitive nanodiscs are investigated as fundamental properties. The photonanodiscs are photoactivated in such a way that allow refractive index tuning over 0.18 according to the biological function of the respective proteins with color-dependent response.


Assuntos
Refratometria , Rodopsina , Humanos , Retina , Rodopsina/metabolismo
2.
Lab Chip ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072370

RESUMO

Ion channels, which are key to physiological regulation and drug discovery, control ion flux across membranes, and their dysregulation leads to various diseases. Ca2+ monitoring is crucial for cellular signaling when performing Ca-based assays in ion channel research; these assays are widely utilized in both academic and pharmaceutical contexts for drug screening and pharmacological profiling. However, existing detection methods are limited by slow detection speeds, low throughput, complex processes, and low analyte viability. In this study, we developed a label-free optical biosensing method using a conical Au/polydimethylsiloxane platform tailored to detect Ca2+ influx in A549-originated nanovesicles facilitated by the transient receptor potential ankyrin 1 (TRPA1) channel. Nanovesicles expressing cellular signaling components mimic TRPA1 signal transduction in cell membranes and improve analyte viability. The conical Au/polydimethylsiloxane sensor converted Ca2+ influx events induced by specific agonist exposure into noticeable changes in relative transmittance under visible light. The optical transmittance change accompanying Ca2+ influx resulted in an enhanced sensing response, high accuracy and reliability, and rapid detection (∼5 s) without immobilization or ligand treatments. In the underlying sensing mechanism, morphological variations in nanovesicles, which depend on Ca2+ influx, induce a considerable light scattering change at an interface between the nanovesicle and Au, revealed by optical simulation. This study provides a foundation for developing biosensors based on light-matter interactions. These sensors are simple and cost-effective with superior performance and diverse functionality.

3.
J Hazard Mater ; 477: 135282, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39088952

RESUMO

Although biocides are important materials in modern society and help protect human health and the environment, increasing exposure to combined biocides can cause severe side effects in the human body, such as lung fibrosis. In this study, we developed a receptonics system to screen for biocides in combined household chemical products based on biocides. The system contains transient receptor potential ankyrin 1 (TRPA1) nanovesicles (NVs) to sense biocides based on pain receptors and a side-gated field-effect transistor (SGFET) using a single-layer graphene (SLG) micropattern channel. The binding affinities between the TRPA1 receptor and the various biocides were estimated by performing biosimulation and using a calcium ion (Ca2+) assay, and the sensitivity of the system was compared with that of TRPA1 NV receptonics systems. Based on the results of the TRPA1 NV receptonics system, the antagonistic and potentiation effects of combined biocides and household chemical products depended on the concentration. Finally, the TRPA1 NV receptonics system was applied to screen for biocides in real products, and its performance was successful. Based on these results, the TRPA1 NV receptonics system can be utilized to perform risk evaluations and identify biocides in a simple and rapid manner.

4.
Adv Mater ; 35(35): e2302996, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37377148

RESUMO

An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.


Assuntos
Opsinas , Visão Ocular , Humanos , Opsinas/metabolismo , Neurônios/metabolismo , Esferoides Celulares/metabolismo
5.
Biosens Bioelectron ; 202: 113981, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35086028

RESUMO

The development of effective assay techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently received research attention due to its rapid worldwide spread and considerable risk to human health. The receptor-binding domain (RBD) of the spike (S) protein in SARS-CoV-2, a key component for viral entry that has a unique sequence compared to other structural proteins, has been considered an important diagnostic target. In this respect, low-frequency vibrational modes have the advantage of providing information about compositional and structural dependencies at the peptide level. In this study, the sensitive and selective detection of peptides derived from the RBD in SARS-CoV-2 and SARS-CoV was investigated using metamaterial-based sensing chips with a terahertz time-domain spectroscopy (THz-TDS) system. Based on their RBD sequences, two pairs of peptides with 20 residues each were prepared. The sensitivity, specificity, and reproducibility of the proposed system were examined via quantitative analysis using THz metamaterials at three resonance frequencies, and it was found that the species could be discriminated based on their sequences. The THz signals were analyzed with regard to the major amino acid components of the peptides, and the molecular distributions were also investigated based on the hydropathy and net charge of the peptides.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Peptídeos/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA