Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2021: 6641128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935599

RESUMO

BACKGROUND: Till date, there is no known antidote to cure diabetes mellitus despite the discovery and development of diverse pharmacotherapeutic agents many years ago. Technological advancement in natural product chemistry has led to the isolation of analogs of vitexin and isovitexin found in diverse bioresources. These compounds have been extensively studied to explore their pharmacological relevance in diabetes mellitus. Aim of the Study. The present review was to compile results from in vitro and in vivo studies performed with vitexin and isovitexin derivatives relating to diabetes mellitus and its complications. A systematic online literature query was executed to collect all relevant articles published up to March 2020. RESULTS: In this piece, we have collected data and presented it in a one-stop document to support the multitargeted mechanistic actions of vitexin and isovitexin in controlling diabetes mellitus and its complications. CONCLUSION: Data collected hint that vitexin and isovitexin work by targeting diverse pathophysiological and metabolic pathways and molecular drug points involved in the clinical manifestations of diabetes mellitus. This is expected to provide a deeper understanding of its actions and also serve as a catapult for clinical trials and application research.


Assuntos
Apigenina/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Animais , Humanos
2.
Front Microbiol ; 14: 1163450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455743

RESUMO

Introduction: Gonorrhoea is a major public health concern. With the global emergence and spread of resistance to last-line antibiotic treatment options, gonorrhoea threatens to be untreatable in the future. Therefore, this study performed whole genome characterization of Neisseria gonorrhoeae collected in Ghana to identify lineages of circulating strains as well as their phenotypic and genotypic antimicrobial resistance (AMR) profiles. Methods: Whole genome sequencing (WGS) was performed on 56 isolates using both the Oxford Nanopore MinION and Illumina MiSeq sequencing platforms. The Comprehensive Antimicrobial Resistance Database (CARD) and PUBMLST.org/neisseria databases were used to catalogue chromosomal and plasmid genes implicated in AMR. The core genome multi-locus sequence typing (cgMLST) approach was used for comparative genomics analysis. Results and Discussion: In vitro resistance measured by the E-test method revealed 100%, 91.0% and 85.7% resistance to tetracycline, penicillin and ciprofloxacin, respectively. A total of 22 sequence types (STs) were identified by multilocus sequence typing (MLST), with ST-14422 (n = 10), ST-1927 (n = 8) and ST-11210 (n = 7) being the most prevalent. Six novel STs were also identified (ST-15634, 15636-15639 and 15641). All isolates harboured chromosomal AMR determinants that confer resistance to beta-lactam antimicrobials and tetracycline. A single cefixime-resistant strain, that belongs to N. gonorrhoeae multiantigen sequence type (NG-MAST) ST1407, a type associated with widespread cephalosporin resistance was identified. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR), identified 29 unique sequence types, with ST-464 (n = 8) and the novel ST-3366 (n = 8) being the most prevalent. Notably, 20 of the 29 STs were novel, indicative of the unique nature of molecular AMR determinants in the Ghanaian strains. Plasmids were highly prevalent: pTetM and pblaTEM were found in 96% and 92% of isolates, respectively. The TEM-135 allele, which is an amino acid change away from producing a stable extended-spectrum ß-lactamase that could result in complete cephalosporin resistance, was identified in 28.5% of the isolates. Using WGS, we characterized N. gonorrhoeae strains from Ghana, giving a snapshot of the current state of gonococcal AMR in the country and highlighting the need for constant genomic surveillance.

3.
Front Cell Infect Microbiol ; 12: 859981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719359

RESUMO

The therapeutic challenges pertaining to leishmaniasis due to reported chemoresistance and toxicity necessitate the need to explore novel pathways to identify plausible inhibitory molecules. Leishmania donovani 24-sterol methyltransferase (LdSMT) is vital for the synthesis of ergosterols, the main constituents of Leishmania cellular membranes. So far, mammals have not been shown to possess SMT or ergosterols, making the pathway a prime candidate for drug discovery. The structural model of LdSMT was elucidated using homology modeling to identify potential novel 24-SMT inhibitors via virtual screening, scaffold hopping, and de-novo fragment-based design. Altogether, six potential novel inhibitors were identified with binding energies ranging from -7.0 to -8.4 kcal/mol with e-LEA3D using 22,26-azasterol and S1-S4 obtained from scaffold hopping via the ChEMBL, DrugBank, PubChem, ChemSpider, and ZINC15 databases. These ligands showed comparable binding energy to 22,26-azasterol (-7.6 kcal/mol), the main inhibitor of LdSMT. Moreover, all the compounds had plausible ligand efficiency-dependent lipophilicity (LELP) scores above 3. The binding mechanism identified Tyr92 to be critical for binding, and this was corroborated via molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The ligand A1 was predicted to possess antileishmanial properties with a probability of activity (Pa) of 0.362 and a probability of inactivity (Pi) of 0.066, while A5 and A6 possessed dermatological properties with Pa values of 0.205 and 0.249 and Pi values of 0.162 and 0.120, respectively. Structural similarity search via DrugBank identified vabicaserin, daledalin, zanapezil, imipramine, and cefradine with antileishmanial properties suggesting that the de-novo compounds could be explored as potential antileishmanial agents.


Assuntos
Antiprotozoários , Leishmania donovani , Antiprotozoários/química , Ligantes , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Esteróis
4.
J Biomol Struct Dyn ; 40(23): 12932-12947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34533095

RESUMO

Although Varicella or chickenpox infection which is caused by the varicella-zoster virus (VZV) has significantly been managed through vaccination, it remains an infection that poses threats to the nearest future due to therapeutic drawbacks. The focus of this research was geared towards in silico screening for the identification of novel compounds in plants of ethnopharmacological relevance in the treatment of chicken pox in West Africa. The work evaluated 65 compounds reported to be present in Achillea millefolium, Psidium guajava and Vitex doniana sweet to identify potential inhibitors of thymidine kinase, the primary drug target of varicella zoster virus. Out of the 65 compounds docked, 42 of these compounds were observed to possess binding energies lower than -7.0 kcal/mol, however only 20 were observed to form hydrogen bond interactions with the protein. These interactions were elucidated using LigPlot+ and MM-PBSA analysis with residue Ala134 predicted as critical for binding. Pharmacological profiling predicted three potential lead compounds comprising myricetin, apigenin- 4' -glucoside and Abyssinone V to possess good pharmacodynamics properties and negligibly toxic. The molecules were predicted as antivirals including anti-herpes and involved in mechanisms comprising inhibition of polymerase, ATPase and membrane integrity, which were corroborated previously in other viruses. These drug-like compounds are plausible biotherapeutic moieties for further biochemical and cell-based assaying to discover their potential for use against chickenpox. Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Herpesvirus Humano 3 , Compostos Fitoquímicos , Timidina Quinase , Humanos , Antivirais/farmacologia , Varicela/tratamento farmacológico , Varicela/prevenção & controle , Herpes Zoster/tratamento farmacológico , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3/efeitos dos fármacos , Timidina Quinase/antagonistas & inibidores , Etnofarmacologia , Compostos Fitoquímicos/farmacologia
5.
Front Pharmacol ; 11: 753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523532

RESUMO

Leishmania is a parasitic protozoon responsible for the neglected tropical disease Leishmaniasis. Approximately, 350 million people are susceptible and close to 70,000 death cases globally are reported annually. The lack of effective leishmanicides, the emergence of drug resistance and toxicity concerns necessitate the pursuit for effective antileishmanial drugs. Natural compounds serve as reservoirs for discovering new drugs due to their chemical diversity. Hardwickiic acid (HA) isolated from the stembark of Croton sylvaticus was evaluated for its leishmanicidal potential against Leishmania donovani and L. major promastigotes. The susceptibility of the promastigotes to HA was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide/phenazine methosulfate colorimetric assay with Amphotericin B serving as positive control. HA showed a significant antileishmanial activity on L. donovani promastigotes with an IC50 value of 31.57± 0.06 µM with respect to the control drug, amphotericin B with IC50 of 3.35 ± 0.14 µM). The cytotoxic activity was observed to be CC50 = 247.83 ± 6.32 µM against 29.99 ± 2.82 µM for curcumin, the control, resulting in a selectivity index of SI = 7.85. Molecular modeling, docking and dynamics simulations of selected drug targets corroborated the observed antileishmanial activity of HA. Novel insights into the mechanisms of binding were obtained for trypanothione reductase (TR), pteridine reductase 1 (PTR1), and glutamate cysteine ligase (GCL). The binding affinity of HA to the drug targets LmGCL, LmPTR1, LdTR, LmTR, LdGCL, and LdPTR1 were obtained as -8.0, -7.8, -7.6, -7.5, -7.4 and -7.1 kcal/mol, respectively. The role of Lys16, Ser111, and Arg17 as critical residues required for binding to LdPTR1 was reinforced. HA was predicted as a Caspase-3 stimulant and Caspase-8 stimulant, implying a possible role in apoptosis, which was shown experimentally that HA induced parasite death by loss of membrane integrity. HA was also predicted as antileishmanial molecule corroborating the experimental activity. Therefore, HA is a promising antileishmanial molecule worthy of further development as a biotherapeutic agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA