Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279309

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.


Assuntos
Doenças Inflamatórias Intestinais , Animais , Humanos , Doenças Inflamatórias Intestinais/patologia , Citocinas , Dieta Hiperlipídica , Gorduras na Dieta , Inflamação/patologia , Lipídeos , Mucosa Intestinal/patologia
2.
BMC Plant Biol ; 23(1): 517, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880577

RESUMO

BACKGROUND: Soybean is a valuable source of edible protein and oil, as well as secondary metabolites that can be used in food products, cosmetics, and medicines. However, because soybean isoflavone content is a quantitative trait influenced by polygenes and environmental interactions, its genetic basis remains unclear. RESULTS: This study was conducted to identify causal quantitative trait loci (QTLs) associated with soybean isoflavone contents. A mutant-based F2 population (190 individuals) was created by crossing the Korean cultivar Hwanggeum with low isoflavone contents (1,558 µg g-1) and the soybean mutant DB-088 with high isoflavone contents (6,393 µg g-1). A linkage map (3,049 cM) with an average chromosome length of 152 cM was constructed using the 180K AXIOM® SoyaSNP array. Thirteen QTLs related to agronomic traits were mapped to chromosomes 2, 3, 11, 13, 19, and 20, whereas 29 QTLs associated with isoflavone contents were mapped to chromosomes 1, 3, 8, 11, 14, 15, and 17. Notably, the qMGLI11, qMGNI11, qADZI11, and qTI11, which located Gm11_9877690 to Gm11_9955924 interval on chromosome 11, contributed to the high isoflavone contents and explained 11.9% to 20.1% of the phenotypic variation. This QTL region included four candidate genes, encoding ß-glucosidases 13, 14, 17-1, and 17-2. We observed significant differences in the expression levels of these genes at various seed developmental stages. Candidate genes within the causal QTLs were functionally characterized based on enriched GO terms and KEGG pathways, as well as the results of a co-expression network analysis. A correlation analysis indicated that certain agronomic traits (e.g., days to flowering, days to maturity, and plant height) are positively correlated with isoflavone content. CONCLUSIONS: Herein, we reported that the major QTL associated with isoflavone contents was located in the interval from Gm11_9877690 to Gm11_9955924 (78 kb) on chromosome 11. Four ß-glucosidase genes were identified that may be involved in high isoflavone contents of soybean DB-088. Thus, the mutant alleles from soybean DB-088 may be useful for marker-assisted selection in developing soybean lines with high isoflavone contents and superior agronomic traits.


Assuntos
Glycine max , Isoflavonas , Humanos , Glycine max/genética , Glycine max/metabolismo , Isoflavonas/análise , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Fenótipo , Sementes/metabolismo
3.
Theor Appl Genet ; 136(7): 166, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393202

RESUMO

KEY MESSAGE: One major quantitative trait loci and candidate gene for salt tolerance were identified on chromosome 3 from a new soybean mutant derived from gamma-ray irradiation, which will provide a new genetic resource for improving soybean salt tolerance. Soil salinity is a worldwide problem that reduces crop yields, but the development of salt-tolerant crops can help overcome this challenge. This study was conducted with the purpose of evaluating the morpho-physiological and genetic characteristics of a new salt-tolerant mutant KA-1285 developed using gamma-ray irradiation in soybean (Glycine max L.). The morphological and physiological responses of KA-1285 were compared with salt-sensitive and salt-tolerant genotypes after treatment with 150 mM NaCl for two weeks. In addition, a major salt tolerance quantitative trait locus (QTL) was identified on chromosome 3 in this study using the Daepung X KA-1285 169 F2:3 population, and a specific deletion was identified in Glyma03g171600 (Wm82.a2.v1) near the QTL region based on re-sequencing analysis. A kompetitive allele-specific PCR (KASP) marker was developed based on the deletion of Glyma03g171600 which distinguished the wild-type and mutant alleles. Through the analysis of gene expression patterns, it was confirmed that Glyma03g171700 (Wm82.a2.v1) is a major gene that controls salt tolerance functions in Glyma03g32900 (Wm82.a1.v1). These results suggest that the gamma-ray-induced mutant KA-1285 has the potential to be employed for the development of a salt-tolerant cultivar and provide useful information for genetic research related to salt tolerance in soybeans.


Assuntos
Glycine max , Glycine max/genética , Alelos , Raios gama , Genótipo , Reação em Cadeia da Polimerase
4.
Microb Cell Fact ; 21(1): 75, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501871

RESUMO

BACKGROUND: Melanins are a heterologous group of biopolymeric pigments synthesized by diverse prokaryotes and eukaryotes and are widely utilized as bioactive materials and functional polymers in the biotechnology industry. Here, we report the high-level melanin production using a new melanogenic Flavobacterium kingsejongi strain and a recombinant Escherichia coli overexpressing F. kingsejongi 4-hydroxyphenylpyruvate dioxygenase (HPPD). RESULTS: Melanin synthesis of F. kingsejongi strain was confirmed via melanin synthesis inhibition test, melanin solubility test, genome analysis, and structural analysis of purified melanin from both wild-type F. kingsejongi and recombinant E. coli expressing F. kingsejongi HPPD. The activity of F. kingsejongi HPPD was demonstrated via in vitro assays with 6 × His-tagged and native forms of HPPD. The specific activity of F. kingsejongi HPPD was 1.2 ± 0.03 µmol homogentisate/min/mg-protein. Bioreactor fermentation of F. kingsejongi produced a large amount of melanin with a titer of 6.07 ± 0.32 g/L, a conversion yield of 60% (0.6 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.03 g/L·h, indicating its potential for industrial melanin production. Additionally, bioreactor fermentation of recombinant E. coli expressing F. kingsejongi HPPD produced melanin at a titer of 3.76 ± 0.30 g/L, a conversion yield of 38% (0.38 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.04 g/L·h. CONCLUSIONS: Both strains showed sufficiently high fermentation capability to indicate their potential as platform strains for large-scale bacterial melanin production. Furthermore, F. kingsejongi strain could serve as a model to elucidate the regulation of melanin biosynthesis pathway and its networks with other cellular pathways, and to understand the cellular responses of melanin-producing bacteria to environmental changes, including nutrient starvation and other stresses.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Biopolímeros , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacterium/genética , Flavobacterium/metabolismo , Melaninas , Tirosina/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142354

RESUMO

In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Mapeamento Cromossômico , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/genética
6.
Mol Biol Rep ; 48(9): 6387-6400, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34426904

RESUMO

BACKGROUND: Perilla frutescens (Lamiaceae) is distributed in East Asia and is classified into var. frutescens and crispa. P. frutescens is multipurpose crop for human health because of a variety of secondary metabolites such as phenolic compound and essential oil. However, a lack of genetic information has hindered the development and utilization of Perilla genotypes. METHODS AND RESULTS: This study was performed to develop expressed sequence tag-simple sequence repeat (EST-SSR) markers from P. frutescens var. crispa (wild type) and Antisperill (a mutant cultivar) and used them to assess the genetic diversity of, and relationships among, 94 P. frutescens genotypes. We obtained 65 Gb of sequence data comprising 632,970 transcripts by de novo RNA-sequencing. Of the 14,780 common SSRs, 102 polymorphic EST-SSRs were selected using in silico polymerase chain reaction (PCR). Overall, successful amplification from 58 EST-SSRs markers revealed remarkable genetic diversity and relationships among 94 P. frutescens genotypes. In total, 268 alleles were identified, with an average of 4.62 alleles per locus (range 2-11 alleles/locus). The average polymorphism information content (PIC) value was 0.50 (range 0.04-0.86). In phylogenetic and population structure analyses, the genotypes formed two major groups: Group I (var. crispa) and Group II (var. frutescens). CONCLUSION: This results suggest that 58 novel EST-SSR markers derived from wild-type cultivar (var. crispa) and its mutant cultivar (Antisperill) have potential uses for population genetics and recombinant inbred line mapping analyses, which will provide comprehensive insights into the genetic diversity and relationship of P. frutescens.


Assuntos
Etiquetas de Sequências Expressas , Repetições de Microssatélites/genética , Mutação , Perilla frutescens/genética , Polimorfismo Genético , Transcriptoma/genética , Alelos , Produtos Agrícolas/genética , Loci Gênicos , Genótipo , Filogenia , RNA-Seq/métodos
7.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946553

RESUMO

The isoflavone changes occurring in mature soybeans during food processing have been well studied, but less information is available on the changes in immature soybeans during thermal processing. This study aimed to determine the effect of thermal processing by dry- or wet-heating on the changes in the isoflavone profiles of immature and mature soybeans. In the malonylglycoside forms of isoflavone, their deglycosylation was more severe after wet-heating than after dry-heating regardless of the soybean maturity. The malonyl forms of isoflavones in the immature seeds were drastically degraded after a short wet-heating process. In the acetylglycoside forms of isoflavone, dry-heating produced relatively low amounts of the acetyl types in the immature soybeans compared with those in the mature soybeans. These results were explained by the content of acetyldaidzin being relatively less changed after dry-heating immature soybeans but increasing four to five times in the mature soybeans. More of the other types of acetylglycoside were produced by dry-heating soybeans regardless of their maturity. Acetylgenistin in wet-heating was a key molecule because its content was unchanged in the immature soybeans during processing but increased in the mature soybeans. This determined the total acetylglycoside content after wet-heating. In contrast, most of the acetyl forms of isoflavone were produced after 90 to 120 min of dry-heating regardless of the seed maturity. It can be suggested that the pattern of isoflavone conversion was significantly affected by the innate water content of the seeds, with a lower water content in the mature soybeans leading to the greater production of acetyl isoflavones regardless of the processing method even if only applied for a relatively short time. The results suggested that the isoflavone conversion in the immature soybeans mainly follows the wet-heating process and can be promoted in the application of stronger processing.


Assuntos
Glycine max/efeitos dos fármacos , Isoflavonas/farmacologia , Temperatura , Manipulação de Alimentos , Isoflavonas/química
8.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946633

RESUMO

Lentil (Lens culinaris; Fabaceae), one of the major pulse crops in the world, is an important source of proteins, prebiotics, lipids, and essential minerals as well as functional components such as flavonoids, polyphenols, and phenolic acids. To improve crop nutritional and medicinal traits, hybridization and mutation are widely used in plant breeding research. In this study, mutant lentil populations were generated by γ-irradiation for the development of new cultivars by inducing genetic diversity. Molecular networking via Global Natural Product Social Molecular Networking web platform and dipeptidyl peptide-IV inhibitor screening assay were utilized as tools for structure-based discovery of active components in active mutant lines selected among the lentil population. The bioactivity-based molecular networking analysis resulted in the annotation of the molecular class of phosphatidylcholine (PC) from the most active mutant line. Among PCs, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (18:0 Lyso PC) was selected for further in vivo study of anti-obesity effect in a high-fat diet (HFD)-induced obese mouse model. The administration of 18:0 Lyso PC not only prevented body weight gain and decreased relative gonadal adipose tissue weight, but also attenuated the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and leptin in the sera of HFD-induced obese mice. Additionally, 18:0 Lyso PC treatment inhibited the increase of adipocyte area and crown-like structures in adipose tissue. Therefore, these results suggest that 18:0 Lyso PC is a potential compound to have protective effects against obesity, improving obese phenotype induced by HFD.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fármacos Antiobesidade , LDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Lens (Planta) , Obesidade , Fosfatidilcolinas , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Lens (Planta)/química , Lens (Planta)/genética , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidilcolinas/farmacologia
9.
Molecules ; 25(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932699

RESUMO

Hibiscus species are rich in phenolic compounds and have been traditionally used for improving human health through their bioactive activities. The present study investigated the phenolic compounds of leaf extracts from 18 different H. acetosella accessions and evaluated their biofunctional properties, focusing on antioxidant and antibacterial activity. The most abundant phenolic compound in H. acetosella was caffeic acid, with levels ranging from 14.95 to 42.93 mg/100 g. The antioxidant activity measured by the ABTS assay allowed the accessions to be classified into two groups: a high activity group with red leaf varieties (74.71-84.02%) and a relatively low activity group with green leaf varieties (57.47-65.94%). The antioxidant activity was significantly correlated with TAC (0.933), Dp3-Sam (0.932), Dp3-Glu (0.924), and Cy3-Sam (0.913) contents (p < 0.001). The H. acetosella phenolic extracts exhibited antibacterial activity against two bacteria, with zones of inhibition between 12.00 and 13.67 mm (Staphylococcus aureus), and 10.67 and 13.33 mm (Pseudomonas aeruginosa). All accessions exhibited a basal antibacterial activity level (12 mm) against the Gram-positive S. aureus, with PI500758 and PI500764 exhibiting increased antibacterial activity (13.67 mm), but they exhibited a more dynamic antibacterial activity level against the Gram-negative P. aeruginosa.


Assuntos
Antibacterianos/análise , Antioxidantes/análise , Hibiscus/química , Fenol/análise , Folhas de Planta/química , Antocianinas/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cátions , Flavonoides/química , Testes de Sensibilidade Microbiana , Fenol/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
10.
J Sci Food Agric ; 99(1): 55-63, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29802632

RESUMO

BACKGROUND: Wheat grain is recognized as a rich source of nutrients, including proteins, vitamins, minerals, fibers and antioxidants. In recent years, the focus of wheat breeding has been to increase the content of bioactive compounds to improve human health and prevent diseases. RESULTS: Five novel wheat mutant lines with variable seed color were developed using gamma irradiation of hexaploid wheat inbred line K4191 (purple seed color). The total anthocyanin contents of three mutant lines (L47, L167 and L925) were significantly higher than those of wild-type lines, including K4191 and 'Keumkang' (white seed color). L925 showed the highest total anthocyanin content, and cyanidin-3-glucoside was presented as the most predominant anthocyanin. Compared with 'Keumkang', the expression of anthocyanin biosynthesis genes was significantly up-regulated in purple seed mutant lines. The highest antioxidant activity was observed in L925 extracts. The expression of a few antioxidant-related genes and total anthocyanin content were positively correlated with antioxidant capacity. These data suggest that anthocyanins and phenolic compounds in wheat grains contribute to the antioxidant potential. CONCLUSION: Purple grain color is associated with higher anthocyanin accumulation and antioxidant capacity in wheat. Wheat mutants developed in this study may serve as a valuable source of antioxidants. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Triticum/química , Triticum/genética , Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/metabolismo , Cor , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia , Sementes/química , Sementes/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA