Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Granul Matter ; 24(2): 45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221791

RESUMO

ABSTRACT: The calculation of the impact pressure on obstacles in granular flows is a fundamental issue of practical relevance, e.g. for snow avalanches impacting obstacles. Previous research shows that the load on the obstacle builds up, due to the formation of force chains originating from the obstacle and extending into the granular material. This leads to the formation of a mobilized domain, wherein the flow is influenced by the presence of the obstacle. To identify the link between the physical mobilized domain properties and the pressure exerted on obstacles, we simulate subcritical cohesionless and cohesive avalanches of soft particles past obstacles with circular, rectangular or triangular cross-section using the Discrete Element Method. Our results show that the impact pressure decreases non-linearly with increasing obstacle width, regardless of the obstacle's cross-section. While the mobilized domain size is proportional to the obstacle width, the pressure decrease with increasing width originates from the jammed material inside the mobilized domain. We provide evidence that the compression inside the mobilized domain governs the pressure build-up for cohesionless subcritical granular flows. In the cohesive case, the stress transmission in the compressed mobilized domain is further enhanced, causing a pressure increase compared with the cohesionless case. Considering a kinetic and a gravitational contribution, we are able to calculate the impact pressure based on the properties of the mobilized domain. The equations used for the pressure calculation in this article may be useful in future predictive pressure calculations based on mobilized domain properties. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10035-021-01196-1.

2.
Pediatr Pulmonol ; 42(10): 888-97, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17726709

RESUMO

BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.


Assuntos
Fluxômetros , Capacidade Residual Funcional/fisiologia , Ultrassonografia/métodos , Simulação por Computador , Feminino , Fluxômetros/normas , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Biológicos , Espaço Morto Respiratório , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA