Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(39): 10438-10442, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893985

RESUMO

Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.


Assuntos
Abelhas/classificação , Mudança Climática , Coffea/crescimento & desenvolvimento , Café/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Polinização/fisiologia , Agricultura/economia , Animais , Abelhas/fisiologia , Ecossistema , Fazendas/economia
2.
Comput Electron Agric ; 158: 109-121, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007323

RESUMO

Farmers can manage their crops and farms better if they can communicate their experiences, both positive and negative, with each other and with experts. Digital agriculture using internet communication technology (ICT) may facilitate the sharing of experiences between farmers themselves and with experts and others interested in agriculture. ICT approaches in agriculture are, however, still out of the reach of many farmers. The reasons are lack of connectivity, missing capacity building and poor usability of ICT applications. We decided to tackle this problem through cost-effective, easy to use ICT approaches, based on infrastructure and services currently available to small-scale producers in developing areas. Working through a participatory design approach, we developed and tested a novel technology. GeoFarmer provides near real-time, two-way data flows that support processes of co-innovation in agricultural development projects. It can be used as a cost-effective ICT-based platform to monitor agricultural production systems with interactive feedback between the users, within pre-defined geographical domains. We tested GeoFarmer in four geographic domains associated with ongoing agricultural development projects in East and West Africa and Latin America. We demonstrate that GeoFarmer is a cost-effective means of providing and sharing opportune indicators of on-farm performance. It is a potentially useful tool that farmers and agricultural practitioners can use to manage their crops and farms better, reduce risk, increase productivity and improve their livelihoods.

3.
Mitig Adapt Strateg Glob Chang ; 22(6): 903-927, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30093821

RESUMO

The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.

4.
Mitig Adapt Strateg Glob Chang ; 22(5): 743-760, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30093820

RESUMO

Drybeans (Phaseolus vulgaris L.) are an important subsistence crop in Central America. Future climate change may threaten drybean production and jeopardize smallholder farmers' food security. We estimated yield changes in drybeans due to changing climate in these countries using downscaled data from global circulation models (GCMs) in El Salvador, Guatemala, Honduras, and Nicaragua. We generated daily weather data, which we used in the Decision Support System for Agrotechnology Transfer (DSSAT) drybean submodel. We compared different cultivars, soils, and fertilizer options in three planting seasons. We analyzed the simulated yields to spatially classify high-impact spots of climate change across the four countries. The results show a corridor of reduced yields from Lake Nicaragua to central Honduras (10-38 % decrease). Yields increased in the Guatemalan highlands, towards the Atlantic coast, and in southern Nicaragua (10-41 % increase). Some farmers will be able to adapt to climate change, but others will have to change crops, which will require external support. Research institutions will need to devise technologies that allow farmers to adapt and provide policy makers with feasible strategies to implement them.

5.
Proc Natl Acad Sci U S A ; 110(21): 8357-62, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23674681

RESUMO

We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop-climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.


Assuntos
Agricultura/economia , Agricultura/métodos , Simulação por Computador , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/tendências , Produtos Agrícolas/economia , Países em Desenvolvimento/economia , Técnicas de Planejamento
6.
PLoS One ; 14(3): e0213641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917146

RESUMO

As climate change continues to exert increasing pressure upon the livelihoods and agricultural sector of many developing and developed nations, a need exists to understand and prioritise at the sub national scale which areas and communities are most vulnerable. The purpose of this study is to develop a robust, rigorous and replicable methodology that is flexible to data limitations and spatially prioritizes the vulnerability of agriculture and rural livelihoods to climate change. We have applied the methodology in Vietnam, Uganda and Nicaragua, three contrasting developing countries that are particularly threatened by climate change. We conceptualize vulnerability to climate change following the widely adopted combination of sensitivity, exposure and adaptive capacity. We used Ecocrop and Maxent ecological models under a high emission climate scenario to assess the sensitivity of the main food security and cash crops to climate change. Using a participatory approach, we identified exposure to natural hazards and the main indicators of adaptive capacity, which were modelled and analysed using geographic information systems. We finally combined the components of vulnerability using equal-weighting to produce a crop specific vulnerability index and a final accumulative score. We have mapped the hotspots of climate change vulnerability and identified the underlying driving indicators. For example, in Vietnam we found the Mekong delta to be one of the vulnerable regions due to a decline in the climatic suitability of rice and maize, combined with high exposure to flooding, sea level rise and drought. However, the region is marked by a relatively high adaptive capacity due to developed infrastructure and comparatively high levels of education. The approach and information derived from the study informs public climate change policies and actions, as vulnerability assessments are the bases of any National Adaptation Plans (NAP), National Determined Contributions (NDC) and for accessing climate finance.


Assuntos
Agricultura/métodos , Mudança Climática , Tomada de Decisões , Abastecimento de Alimentos , Medição de Risco , Produtos Agrícolas , Secas , Inundações , Sistemas de Informação Geográfica , Geografia , Política de Saúde , Nicarágua , Política Pública , População Rural , Clima Tropical , Uganda , Vietnã , Zea mays
7.
PLoS One ; 13(5): e0196392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29727457

RESUMO

Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of adaptive activities on some sites in South Asia and Central America, but increases specialization in West and East Africa.


Assuntos
Agricultura/métodos , Aclimatação , África Oriental , África Ocidental , Agricultura/tendências , Ásia , América Central , Mudança Climática , Conservação dos Recursos Naturais , Países em Desenvolvimento , Fazendeiros , Abastecimento de Alimentos , Humanos , Tempo (Meteorologia)
8.
PLoS One ; 13(11): e0207700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30452482

RESUMO

Recent studies highlight a growing concern over the limited adoption of climate smart agricultural (CSA) practices despite their potential benefits on adaptation, mitigation and productivity. Literature indicates several factors behind the lack of adoption including socio-demographic and economic conditions, agro-ecological scales and the nature of the practices. This paper examines to what extent and under which conditions such factors influence the adoption of CSA practices at farm, household and community level across three study sites in different continents: Vietnam, Nicaragua and Uganda. While cost benefit analysis (CBA) is employed to assess the farm-level profitability of CSA practices, the aggregate community impact disaggregated by different groups of farmer typologies with specific socio-economic features is derived from the adoption rate estimated by the relative advantage of practices and the income level of each group. Our main findings show great variation of farm-profitability of CSA practices across scales. Similar practices could generate different profitability depending on crop typologies, input access and prices, household types and local context. Regarding the aggregate profitability of CSA practices at regional scale, we found that under particular conditions, relevant factors of adoption matter to the adoption pattern and thereby affects the ranking. Such conditions include (i) high income inequality, (ii) large profitability gap of prioritized CSA practices, and (iii) large proportion of cost and benefit of the practices in the level of income. This study contributes to enhancing the prioritization process of CSA practices and provides practical guidance for research and policy to tailor the investment to appropriate end-users to assure the greatest impact for the community.


Assuntos
Agricultura/métodos , Fazendas/economia , Agricultura/economia , Mudança Climática , Análise Custo-Benefício , Características da Família , Nicarágua , Fatores Socioeconômicos , Uganda , Vietnã
9.
PLoS One ; 13(4): e0195777, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29659629

RESUMO

Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers' livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers' coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific.


Assuntos
Agricultura , Cacau , Mudança Climática , Agricultura Florestal , Renda , Geografia , Gana
10.
Data Brief ; 14: 302-306, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28808671

RESUMO

This article provides a description of intra-household survey data that were collected in Uganda and Tanzania in 2014 and 2015, respectively. The surveys were implemented using a structured questionnaire administered among 585 households in Uganda and 608 in Tanzania. Information on decision making processes in agricultural production was collected from the principal adult male and female decision-makers in each household. The survey consisted of two parts. Firstly, the decision-makers, both male and female of each household were jointly interviewed. Secondly, individual interviews were carried out, questioning the decision-makers separately. The datasets include both household and individual level data containing numeric, categorical and string variables. The datasets have been shared publicly on the Harvard dataverse.

11.
Sci Total Environ ; 556: 231-41, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26974571

RESUMO

The West African cocoa belt, reaching from Sierra Leone to southern Cameroon, is the origin of about 70% of the world's cocoa (Theobroma cacao), which in turn is the basis of the livelihoods of about two million farmers. We analyze cocoa's vulnerability to climate change in the West African cocoa belt, based on climate projections for the 2050s of 19 Global Circulation Models under the Intergovernmental Panel on Climate Change intermediate emissions scenario RCP 6.0. We use a combination of a statistical model of climatic suitability (Maxent) and the analysis of individual, potentially limiting climate variables. We find that: 1) contrary to expectation, maximum dry season temperatures are projected to become as or more limiting for cocoa as dry season water availability; 2) to reduce the vulnerability of cocoa to excessive dry season temperatures, the systematic use of adaptation strategies like shade trees in cocoa farms will be necessary, in reversal of the current trend of shade reduction; 3) there is a strong differentiation of climate vulnerability within the cocoa belt, with the most vulnerable areas near the forest-savanna transition in Nigeria and eastern Côte d'Ivoire, and the least vulnerable areas in the southern parts of Cameroon, Ghana, Côte d'Ivoire and Liberia; 4) this spatial differentiation of climate vulnerability may lead to future shifts in cocoa production within the region, with the opportunity of partially compensating losses and gains, but also the risk of local production expansion leading to new deforestation. We conclude that adaptation strategies for cocoa in West Africa need to focus at several levels, from the consideration of tolerance to high temperatures in cocoa breeding programs, the promotion of shade trees in cocoa farms, to policies incentivizing the intensification of cocoa production on existing farms where future climate conditions permit and the establishment of new farms in already deforested areas.


Assuntos
Adaptação Fisiológica , Cacau/fisiologia , Mudança Climática , Monitoramento Ambiental , Camarões , Chocolate , Conservação dos Recursos Naturais , Côte d'Ivoire , Gana , Pradaria , Nigéria , Estações do Ano
12.
PLoS One ; 11(12): e0167949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030599

RESUMO

Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.


Assuntos
Carbono/análise , Mudança Climática , Gado , Animais , Nicarágua
15.
PLoS One ; 11(8): e0159392, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504826

RESUMO

The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed.


Assuntos
Café , Fazendeiros , Controle de Pragas , Doenças das Plantas , Pesquisa , Colaboração Intersetorial , Percepção , Doenças das Plantas/prevenção & controle , População Rural
16.
PLoS One ; 10(4): e0124155, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875230

RESUMO

Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.


Assuntos
Mudança Climática , Coffea/crescimento & desenvolvimento , Agricultura , Ecossistema
17.
PLoS One ; 10(10): e0140490, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505637

RESUMO

Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.


Assuntos
Coffea/crescimento & desenvolvimento , Ecologia , Ecossistema , Mudança Climática , Coffea/genética , Humanos , Modelos Teóricos
18.
PLoS One ; 9(12): e113510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25436456

RESUMO

The Colombian National Federation of Coffee Growers (FNC) conducted an agro-ecological zoning study based on climate, soil, and terrain of the Colombian coffee-growing regions (CCGR) located in the tropics, between 1° and 11.5° N, in areas of complex topography. To support this study, a climate baseline was constructed at a spatial resolution of 5 km. Twenty-one bioclimatic indicators were drawn from this baseline data and from yield data for different coffee genotypes evaluated under conditions at eight experimental stations (ESs) belonging to the National Center for Coffee Research (CENICAFÉ). Three topographic indicators were obtained from a digital elevation model (DEM). Zoning at a national level resulted in the differentiation of 12 agro-climatic zones. Altitude notably influenced zone differentiation, however other factors such as large air currents, low-pressure atmospheric systems, valleys of the great rivers, and physiography also played an important role. The strategy of zoning according to coffee-growing conditions will enable areas with the greatest potential for the development of coffee cultivation to be identified, criteria for future research to be generated, and the level of technology implementation to be assessed.


Assuntos
Agricultura/métodos , Café/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Altitude , Pressão Atmosférica , Clima , Colômbia , Ecossistema , Modelos Teóricos , Solo
19.
PLoS One ; 9(2): e88463, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586328

RESUMO

The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and strengthening of farmer organizations to enable the adjustment of adaptation strategies to local needs and conditions.


Assuntos
Mudança Climática , Café/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Família , América Central , Humanos
20.
PLoS One ; 7(12): e51412, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240020

RESUMO

This paper discusses a methodology to model precipitation indices and premium prices for index-based drought insurance for smallholders. Spatial basis risk, which is borne by the insured, is a problem, especially in variable topography. Also, site-specific drought risk needs to be estimated accurately in order to offer effective insurance cover and ensure financial sustainability of the insurance scheme. We explore farmers' perceptions on drought and spatial climate variability and draw conclusions concerning basis risk with regards to the proposed methodology. There are technically many options to represent natural heterogeneity in index insurance contracts while serving the customer adequately and keeping transaction costs low.


Assuntos
Agricultura/economia , Secas/economia , Seguro/economia , Humanos , Nicarágua , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA