Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 41(1): e1900404, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583798

RESUMO

A series of phenolic-acid-based 2-oxazoline monomers with methoxy-substituted phenyl and cinnamyl side chains is synthesized and polymerized in a microwave reactor at 140 °C using methyl tosylate as the initiator. The obtained poly(2-oxazoline)s are characterized by NMR spectroscopy, MALDI-TOF mass spectrometry, and size-exclusion chromatography (SEC). Kinetic studies reveal that the microwave-assisted polymerization is fast and completed within less than ≈10 min for low monomer-to-initiator ratios of ≤25. Polymers with number-average molar masses of up to 6500 g mol-1 and low dispersity (1.2-1.3) are produced. The aryl methyl ethers are successfully cleaved with aluminum triiodide/N,N'-diisopropylcarbodiimide to give a poly(2-oxazoline) with pendent catechol groups.


Assuntos
Hidroxibenzoatos/química , Oxazóis/química , Cinética , Micro-Ondas , Polimerização , Polímeros/síntese química , Polímeros/química
2.
ACS Appl Mater Interfaces ; 15(15): 19582-19592, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37022755

RESUMO

Inspired by mussel proteins that enable surface binding in harsh marine environments, we envisioned a platform of protein-repellent macromolecules based on poly(2-ethyl-2-oxazoline) carrying catechol and cationic functional groups. To facilitate surface attachment, catechol units were installed by copolymerizing a functional comonomer, i.e., 2-(3,4-dimethoxyphenyl)-2-oxazoline, in a gradient fashion. Cationic units were introduced by partial acidic hydrolysis. The surface affinity of these polymers was probed using a quartz crystal microbalance with dissipation monitoring (QCM-D), and it was found that polymers with catechol units had a strong tendency to form surface-bound layers on different substrates, i.e., gold, iron, borosilicate, and polystyrene. While the neutral catechol-containing polymers showed strong, but uncontrolled binding, the ones with additional cationic units were able to form defined and durable polymer films. These coatings were able to prevent the attachment of different model proteins, i.e., bovine serum albumin (BSA), fibrinogen (FI), or lysozyme (LYZ). The herein-introduced platform offers straightforward access to nonfouling surface coatings using a biomimetic approach.


Assuntos
Poliaminas , Polímeros , Polímeros/química , Soroalbumina Bovina/química , Técnicas de Microbalança de Cristal de Quartzo , Proteínas de Membrana , Catecóis , Propriedades de Superfície , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA