Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 169(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656158

RESUMO

Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Anti-Infecciosos/farmacologia , Staphylococcus , Testes de Sensibilidade Microbiana
2.
Microbiology (Reading) ; 169(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37668351

RESUMO

Complement offers a first line of defence against infection through the opsonization of microbial pathogens, recruitment of professional phagocytes to the infection site and the coordination of inflammatory responses required for the resolution of infection. Staphylococcus aureus is a successful pathogen that has developed multiple mechanisms to thwart host immune responses. Understanding the precise strategies employed by S. aureus to bypass host immunity will be paramount for the development of vaccines and or immunotherapies designed to prevent or limit infection. To gain a better insight into the specific immune evasion mechanisms used by S. aureus we examined the pathogen's interaction with the soluble complement inhibitor, C4b-binding protein (C4BP). Previous studies indicated that S. aureus recruits C4BP using a specific cell-wall-anchored surface protein and that bound C4BP limits complement deposition on the staphylococcal surface. Using flow-cytometric-based bacterial-protein binding assays we observed no interaction between S. aureus and C4BP. Moreover, we offer a precautionary warning that C4BP isolated from plasma can be co-purified with minute quantities of human IgG, which can distort binding analysis between S. aureus and human-derived proteins. Combined our data indicates that recruitment of C4BP is not a complement evasion strategy employed by S. aureus.


Assuntos
Proteína de Ligação ao Complemento C4b , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Proteínas do Sistema Complemento , Staphylococcus , Proteínas de Membrana
3.
Microbiology (Reading) ; 167(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928202

RESUMO

Staphylococcus aureus is a major human pathogen where the emergence of antibiotic resistant lineages, such as methicillin-resistant S. aureus (MRSA), is a major health concern. While some MRSA lineages are restricted to the healthcare setting, the epidemiology of MRSA is changing globally, with the rise of specific lineages causing disease in healthy people in the community. In the past two decades, community-associated MRSA (CA-MRSA) has emerged as a clinically important and virulent pathogen associated with serious skin and soft-tissue infections (SSTI). These infections are primarily cytotoxin driven, leading to the suggestion that hypervirulent lineages/multi-locus sequence types (STs) exist. To examine this, we compared the cytotoxicity of 475 MRSA isolates representing five major MRSA STs (ST22, ST93, ST8, ST239 and ST36) by employing a monocyte-macrophage THP-1 cell line as a surrogate for measuring gross cytotoxicity. We demonstrate that while certain MRSA STs contain highly toxic isolates, there is such variability within lineages to suggest that this aspect of virulence should not be inferred from the genotype of any given isolate. Furthermore, by interrogating the accessory gene regulator (Agr) sequences in this collection we identified several Agr mutations that were associated with reduced cytotoxicity. Interestingly, the majority of isolates that were attenuated in cytotoxin production contained no mutations in the agr locus, indicating a role of other undefined genes in S. aureus toxin regulation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
4.
Mutagenesis ; 36(5): 380-387, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34459491

RESUMO

The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV-radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test, respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, which did not resemble that for UV implying that CAP-produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Gases em Plasma/farmacologia , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Mutagênese/efeitos dos fármacos , Raios Ultravioleta , Raios X
5.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571989

RESUMO

Staphylococcus aureus is a major human pathogen, and the emergence of antibiotic-resistant strains is making all types of S. aureus infections more challenging to treat. With a pressing need to develop alternative control strategies to use alongside or in place of conventional antibiotics, one approach is the targeting of established virulence factors. However, attempts at this have had little success to date, suggesting that we need to better understand how this pathogen causes disease if effective targets are to be identified. To address this, using a functional genomics approach, we have identified a small membrane-bound protein that we have called MspA. Inactivation of this protein results in the loss of the ability of S. aureus to secrete cytolytic toxins, protect itself from several aspects of the human innate immune system, and control its iron homeostasis. These changes appear to be mediated through a change in the stability of the bacterial membrane as a consequence of iron toxicity. These pleiotropic effects on the ability of the pathogen to interact with its host result in significant impairment in the ability of S. aureus to cause infection in both a subcutaneous and sepsis model of infection. Given the scale of the effect the inactivation of MspA causes, it represents a unique and promising target for the development of a novel therapeutic approach.


Assuntos
Bacteriemia/microbiologia , Evasão da Resposta Imune , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Células A549 , Animais , Bacteriemia/imunologia , Bacteriemia/patologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Eritrócitos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heme/imunologia , Heme/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Homeostase/imunologia , Humanos , Ferro/imunologia , Ferro/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Fagocitose , Proteômica/métodos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/patologia , Toxoide Estafilocócico/genética , Toxoide Estafilocócico/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Células THP-1 , Virulência , Fatores de Virulência/imunologia , Fatores de Virulência/toxicidade , alfa-Defensinas/genética , alfa-Defensinas/imunologia
6.
J Immunol ; 201(9): 2721-2730, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266767

RESUMO

The respiratory pathogen Moraxella catarrhalis is a human-specific commensal that frequently causes acute otitis media in children and stimulates acute exacerbations in chronic obstructive pulmonary disease patients. The exact molecular mechanisms defining host-pathogen interactions promoting pathogenesis are not clearly understood. Limited knowledge hampers vaccine and immunotherapeutic development required to treat this emerging pathogen. In this study, we reveal in detail a novel antibacterial role displayed by short leucine-rich proteoglycans (SLRPs) in concert with complement. We show that fibromodulin (FMOD), osteoadherin (OSAD), and biglycan (BGN) but not decorin (DCN) enhance serum killing of M. catarrhalis. Our results suggest that M. catarrhalis binding to SLRPs is a conserved feature, as the overwhelming majority of clinical and laboratory strains bound all four SLRPs. Furthermore, we resolve the binding mechanism responsible for this interaction and highlight the role of the ubiquitous surface protein (Usp) A2/A2H in mediating binding to host SLRPs. A conserved immune evasive strategy used by M. catarrhalis and other pathogens is the surface acquisition of host complement inhibitors such as C4b-binding protein (C4BP). We observed that FMOD, OSAD, and BGN competitively inhibit binding of C4BP to the surface of M. catarrhalis, resulting in increased C3b/iC3b deposition, membrane attack complex (MAC) formation, and subsequently decreased bacterial survival. Furthermore, both OSAD and BGN promote enhanced neutrophil killing in vitro, both in a complement-dependent and independent fashion. In summary, our results illustrate that SLRPs, FMOD, OSAD, and BGN portray complement-modulating activity enhancing M. catarrhalis killing, defining a new antibacterial role supplied by SLRPs.


Assuntos
Ativação do Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Moraxella catarrhalis/imunologia , Infecções por Moraxellaceae/imunologia , Proteoglicanas/imunologia , Humanos , Leucina
7.
PLoS Biol ; 13(9): e1002229, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331877

RESUMO

Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence.


Assuntos
Bacteriemia/microbiologia , Evolução Biológica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Biofilmes , Armadilhas Extracelulares/fisiologia , Genômica , Humanos , Peptídeo Hidrolases/metabolismo , Polimorfismo Genético , Staphylococcus aureus/enzimologia , alfa-Defensinas
8.
Genome Res ; 24(5): 839-49, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24717264

RESUMO

Microbial virulence is a complex and often multifactorial phenotype, intricately linked to a pathogen's evolutionary trajectory. Toxicity, the ability to destroy host cell membranes, and adhesion, the ability to adhere to human tissues, are the major virulence factors of many bacterial pathogens, including Staphylococcus aureus. Here, we assayed the toxicity and adhesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that while there was remarkably little variation in adhesion, toxicity varied by over an order of magnitude between isolates, suggesting different evolutionary selection pressures acting on these two traits. We performed a genome-wide association study (GWAS) and identified a large number of loci, as well as a putative network of epistatically interacting loci, that significantly associated with toxicity. Despite this apparent complexity in toxicity regulation, a predictive model based on a set of significant single nucleotide polymorphisms (SNPs) and insertion and deletions events (indels) showed a high degree of accuracy in predicting an isolate's toxicity solely from the genetic signature at these sites. Our results thus highlight the potential of using sequence data to determine clinically relevant parameters and have further implications for understanding the microbial virulence of this opportunistic pathogen.


Assuntos
Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Modelos Genéticos , Virulência/genética , Estudo de Associação Genômica Ampla , Mutação INDEL , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Polimorfismo de Nucleotídeo Único
9.
Curr Genet ; 62(3): 523-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26898530

RESUMO

From the first identification of bacteria as a causative agent of disease, researchers have been developing methods and techniques to understand their pathogenic processes. For decades, this work has been limited to looking at a small number of genetically manipulatable isolates in in vitro assays or animal models of infection. Despite these limitations such work has facilitated the development of successful therapeutic strategies, most notably vaccines that target specific virulence-related features. There are however many antimicrobial resistant pathogens for which vaccination strategies have not worked, as we simply do not know enough about how they cause disease. We are however at the dawn of a new era in the study of microbial pathogenicity, where large collections of bacteria isolated directly from human infections can be sequenced and assayed to identify the bacterial features that affect disease severity in humans. Here, we describe our attempt to perform such a study focussed on the major human pathogen Staphylococcus aureus, which demonstrates the step changes such approaches can make to understanding microbial pathogenicity.


Assuntos
Bactérias/genética , Genoma Bacteriano , Genômica , Interações Hospedeiro-Patógeno , Animais , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência/genética
10.
Biochim Biophys Acta ; 1838(12): 3153-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194683

RESUMO

The ubiquitous bacterial pathogen, Staphylococcus aureus, expresses a large arsenal of virulence factors essential for pathogenesis. The phenol-soluble modulins (PSMs) are a family of cytolytic peptide toxins which have multiple roles in staphylococcal virulence. To gain an insight into which specific factors are important in PSM-mediated cell membrane disruption, the lytic activity of individual PSM peptides against phospholipid vesicles and T cells was investigated. Vesicles were most susceptible to lysis by the PSMα subclass of peptides (α1-3 in particular), when containing between 10 and 30mol% cholesterol, which for these vesicles is the mixed solid ordered (so)-liquid ordered (lo) phase. Our results show that the PSMß class of peptides has little effect on vesicles at concentrations comparable to that of the PSMα class and exhibited no cytotoxicity. Furthermore, within the PSMα class, differences emerged with PSMα4 showing decreased vesicle and cytotoxic activity in comparison to its counterparts, in contrast to previous studies. In order to understand this, peptides were studied using helical wheel projections and circular dichroism measurements. The degree of amphipathicity, alpha-helicity and properties such as charge and hydrophobicity were calculated, allowing a structure-function relationship to be inferred. The degree of alpha-helicity of the peptides was the single most important property of the seven peptides studied in predicting their lytic activity. These results help to redefine this class of peptide toxins and also highlight certain membrane parameters required for efficient lysis.

11.
Infect Immun ; 83(9): 3445-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099586

RESUMO

The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination of Staphylococcus aureus in the host. To date, the majority of work on S. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium. Using bone marrow-derived DCs (BMDCs), we demonstrate for the first time that DCs can effectively kill S. aureus but that certain strains of S. aureus have the capacity to evade DC (and macrophage) killing by manipulation of autophagic pathways. Strains with high levels of Agr activity were capable of causing autophagosome accumulation, were not killed by BMDCs, and subsequently escaped from the phagocyte, exerting significant cytotoxic effects. Conversely, strains that exhibited low levels of Agr activity failed to accumulate autophagosomes and were killed by BMDCs. Inhibition of the autophagic pathway by treatment with 3-methyladenine restored the bactericidal effects of BMDCs. Using an in vivo model of systemic infection, we demonstrated that the ability of S. aureus strains to evade phagocytic cell killing and to survive temporarily within phagocytes correlated with persistence in the periphery and that this effect is critically Agr dependent. Taken together, our data suggest that strains of S. aureus exhibiting high levels of Agr activity are capable of blocking autophagic flux, leading to the accumulation of autophagosomes. Within these autophagosomes, the bacteria are protected from phagocytic killing, thus providing an intracellular survival niche within professional phagocytes, which ultimately facilitates dissemination.


Assuntos
Autofagia/fisiologia , Proteínas de Bactérias/metabolismo , Células Dendríticas/microbiologia , Infecções Estafilocócicas/imunologia , Transativadores/metabolismo , Animais , Bacteriemia/metabolismo , Bacteriemia/microbiologia , Western Blotting , Células da Medula Óssea/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia
12.
Macromol Rapid Commun ; 36(24): 2123-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474087

RESUMO

The development of a versatile approach for the rapid and sensitive detection of relevant pathogenic bacteria and autonomous signaling of the detection events in reporter hydrogel film coatings is reported. Exploiting chitosan hydrogel films equipped with chromogenic or fluorogenic reporter moieties, the presence of the Gram-negative bacterium Pseudomonas aeruginosa and the Gram-positive bacterium Staphylococcus aureus is sensed within 1 h by detecting the characteristic enzymes α-glucosidase and elastase with limits of detection (LOD) <45 × 10(-9) M and <20 × 10(-9) M, respectively, for this observation time. The values for the LOD are two to three orders of magnitude smaller than the concentrations of the enzymes detected in the corresponding bacterial supernatants. The results show that the covalently conjugated reporter moieties are exclusively and efficiently reacted by the associated enzyme, allowing in principle for discrimination among different types of bacteria. Since high enzyme concentrations are a result of proliferating bacteria, e.g., in wounds or food, and since the selectivity of the reporting function is easily adapted to bacteria of choice, these reporter hydrogels comprise an interesting platform for the rapid detection of bacteria.


Assuntos
Proteínas de Bactérias/análise , Técnicas Biossensoriais/métodos , Hidrogéis/química , Elastase Pancreática/análise , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/enzimologia , alfa-Glucosidases/análise
13.
Antimicrob Agents Chemother ; 58(2): 1100-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24295979

RESUMO

The emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a growing cause for concern. These strains are more virulent than health care-associated MRSA (HA-MRSA) due to higher levels of toxin expression. In a previous study, we showed that the high-level expression of PBP2a, the alternative penicillin binding protein encoded by the mecA gene on type II staphylococcal cassette chromosome mec (SCCmec) elements, reduced toxicity by interfering with the Agr quorum sensing system. This was not seen in strains carrying the CA-MRSA-associated type IV SCCmec element. These strains express significantly lower levels of PBP2a than the other MRSA type, which may explain their relatively high toxicity. We hypothesized that as oxacillin is known to increase mecA expression levels, it may be possible to attenuate the toxicity of CA-MRSA by using this antibiotic. Subinhibitory oxacillin concentrations induced PBP2a expression, repressed Agr activity, and, as a consequence, decreased phenol-soluble modulin (PSM) secretion by CA-MRSA strains. However, consistent with other studies, oxacillin also increased the expression levels of alpha-toxin and Panton-Valentine leucocidin (PVL). The net effect of these changes on the ability to lyse diverse cell types was tested, and we found that where the PSMs and alpha-toxin are important, oxacillin reduced overall lytic activity, but where PVL is important, it increased lytic activity, demonstrating the pleiotropic effect of oxacillin on toxin expression by CA-MRSA.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Exotoxinas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/genética , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxacilina/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/agonistas , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/biossíntese , Infecções Comunitárias Adquiridas/microbiologia , Exotoxinas/agonistas , Exotoxinas/biossíntese , Proteínas Hemolisinas/agonistas , Proteínas Hemolisinas/biossíntese , Humanos , Leucocidinas/agonistas , Leucocidinas/biossíntese , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo
14.
Appl Microbiol Biotechnol ; 98(16): 7199-209, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24974281

RESUMO

Rhamnolipids (RLs) are heterogeneous glycolipid molecules that are composed of one or two L-rhamnose sugars and one or two ß-hydroxy fatty acids, which can vary in their length and branch size. They are biosurfactants, predominantly produced by Pseudomonas aeruginosa and are important virulence factors, playing a major role in P. aeruginosa pathogenesis. Therefore, a fast, accurate and high-throughput method of detecting such molecules is of real importance. Here, we illustrate the ability to detect RL-producing P. aeruginosa strains with high sensitivity, based on an assay involving phospholipid vesicles encapsulated with a fluorescent dye. This vesicle-lysis assay is confirmed to be solely sensitive to RLs. We illustrate a half maximum concentration for vesicle lysis (EC50) of 40 µM (23.2 µg/mL) using pure commercial RLs and highlight the ability to semi-quantify RLs directly from the culture supernatant, requiring no extra extraction or processing steps or technical expertise. We show that this method is consistent with results from thin-layer chromatography detection and dry weight analysis of RLs but find that the widely used orcinol colorimetric test significantly underestimated RL quantity. Finally, we apply this methodology to compare RL production among strains isolated from either chronic or acute infections. We confirm a positive association between RL production and acute infection isolates (p = 0.0008), highlighting the role of RLs in certain infections.


Assuntos
Técnicas de Química Analítica , Glicolipídeos/análise , Pseudomonas aeruginosa/química , Fatores de Virulência/análise
15.
Biosens Bioelectron ; 247: 115923, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118304

RESUMO

Streptococcus agalactiae, (Group B Streptococcus (GBS)), is a common colonizer of the female vagina. In women giving birth it can be transmitted to the baby and cause serious illness and even death to the child. We have developed a biosensor comprising of phospholipids and fatty acids vesicles encapsulating high concentration, self-quenched carboxyfluorescein, which is released by the lysis of the vesicle by virulence factors expressed by GBS, becoming diluted and fluorescent. The microbial specificity of the sensor was tested against a number of GBS strains and other microbes including Candida albicans, Enterococcus faecalis and Staphylococcus epidermidis and a statistically significant response to GBS measured over these other microbes. To test the invivo efficacy of the biosensor, a pilot study using donated lower vaginal swabs from non-pregnant women was conducted, where 58 female adults were recruited. Participants donated two swabs, one which was used for the vesicle test and one for the 'gold standard', enriched culture media (ECM) test. An overall GBS carriage rate of 17.2% was measured using the ECM test. The vesicle biosensor test took 45 min to obtain a result, and showed a sensitivity of 83.3%, specificity of 85.7% and accuracy of 85.3%. The test accuracy is in line with current novel GBS identification tests, with the advantage of being rapid, easy to use, low-cost and able to be conducted by bedside during start of labour.


Assuntos
Técnicas Biossensoriais , Infecções Estreptocócicas , Adulto , Recém-Nascido , Criança , Gravidez , Feminino , Humanos , Streptococcus agalactiae , Projetos Piloto , Vagina , Infecções Estreptocócicas/diagnóstico
16.
Bio Protoc ; 13(9): e4671, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188104

RESUMO

During infection, complement plays a critical role in inflammation, opsonisation, and destruction of microorganisms. This presents a challenge for pathogens such asStaphylococcus aureusto overcome when invading the host. Our current knowledge on the mechanisms that evolved to counteract and disable this system is limited by the molecular tools available. Present techniques utilise labelled complement-specific antibodies to detect deposition upon the bacterial surface, a method not compatible with pathogens such asS. aureus, which are equipped with immunoglobulin-binding proteins, Protein A and Sbi. This protocol uses a novel antibody-independent probe, derived from the C3 binding domain of staphylococcal protein Sbi, in combination with flow cytometry, to quantify complement deposition. Sbi-IV is biotinylated, and deposition is quantified with fluorophore-labelled streptavidin. This novel method allows observation of wild-type cells without the need to disrupt key immune modulating proteins, presenting the opportunity to analyse the complement evasion mechanism used by clinical isolates. Here, we describe a step-by-step protocol for the expression and purification of Sbi-IV protein, quantification and biotinylation of the probe, and finally, optimisation of flow cytometry to detect complement deposition using normal human serum (NHS) and bothLactococcus lactisandS. aureus.

17.
Biomater Adv ; 151: 213467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236117

RESUMO

Hydrogel-forming microneedle arrays as a technique for transdermal drug delivery show promise as an alternative to traditional drug delivery methods. In this work, hydrogel-forming microneedles have been created with effective, controlled delivery of amoxicillin and vancomycin within comparable therapeutic ranges to that of oral delivered antibiotics. Fabrication using reusable 3D printed master templates enabled quick and low-cost hydrogel microneedle manufacturing through micro-molding. By 3D printing at a tilt angle of 45° the resolution of the microneedle tip was improved by double (from ca. 64 µm down to 23 µm). Amoxicillin and vancomycin were encapsulated within the hydrogel's polymeric network through a unique room temperature swell/deswell drug loading method within minutes, eliminating the need for an external drug reservoir. The hydrogel-forming microneedle mechanical strength was maintained, and successful penetration of porcine skin grafts observed with negligible damage to the needles or surrounding skin morphology. Hydrogel swell rate was tailored by altering the crosslinking density, resulting in controlled antimicrobial release for an applicable delivered dosage. The potent antimicrobial properties of the antibiotic-loaded hydrogel-forming microneedles against both Escherichia coli and Staphylococcus aureus, highlights the beneficial use of hydrogel-forming microneedles towards the minimally invasive transdermal drug delivery of antibiotics.


Assuntos
Anti-Infecciosos , Hidrogéis , Suínos , Animais , Vancomicina , Antibacterianos/farmacologia , Amoxicilina
18.
Microb Biotechnol ; 16(7): 1456-1474, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178319

RESUMO

Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.


Assuntos
Antibacterianos , Desenvolvimento de Medicamentos , Farmacorresistência Bacteriana Múltipla , Infecções Estafilocócicas , Staphylococcus aureus , Peptídeos Catiônicos Antimicrobianos , Produtos Biológicos/uso terapêutico , Antibacterianos/uso terapêutico , Adjuvantes Farmacêuticos/uso terapêutico , Sinergismo Farmacológico , Imunoconjugados/uso terapêutico , Terapia por Fagos , Desenvolvimento de Medicamentos/tendências , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Humanos
19.
ACS Food Sci Technol ; 3(10): 1680-1693, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881445

RESUMO

We report a novel cross-linked chitosan composite film containing vanillin, glycerol, and green tea extract. The effects of vanillin-mediated cross-linking and the incorporation of antimicrobial green tea polyphenols were investigated. The cross-linking effect, confirmed by Fourier transform infrared (FTIR) analysis, increased the tensile strength of the biopolymer film to 20.9 ± 3 MPa. The release kinetics of polyphenols from the chitosan-vanillin matrix was studied, and we reported an initial burst release (8 h) followed by controlled release (8 to 400 h). It was found that both vanillin and green tea polyphenols were successful inhibitors of foodborne bacteria, with a minimum inhibitory concentration of the tea polyphenols determined as 0.15 mg/mL (Staphylococcus aureus). These active components also displayed strong antioxidant capacities, with polyphenols quenching >80% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals at all concentrations tested. Degradation results revealed that there was a significant (>85%) mass loss of all samples after being buried in compost for 12 weeks. The biopolymeric films, prepared by solvent casting methods, adhere to green chemistry and waste valorization principles. The one-pot recipe reported may also be applied to other cross-linkers and active compounds with similar chemical functionalities. Based on the obtained results, the presented material provides a promising starting point for the development of a degradable active packaging material.

20.
ACS Infect Dis ; 9(11): 2141-2159, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37828912

RESUMO

The lipoteichoic acid (LTA) biosynthesis pathway has emerged as a promising antimicrobial therapeutic target. Previous studies identified the 1,3,4 oxadiazole compound 1771 as an LTA inhibitor with activity against Gram-positive pathogens. We have succeeded in making six 1771 derivatives and, through subsequent hit validation, identified the incorporation of a pentafluorosulfanyl substituent as central in enhancing activity. Our newly described derivative, compound 13, showed a 16- to 32-fold increase in activity compared to 1771 when tested against a cohort of multidrug-resistant Staphylococcus aureus strains while simultaneously exhibiting an improved toxicity profile against mammalian cells. Molecular techniques were employed in which the assumed target, lipoteichoic acid synthase (LtaS), was both deleted and overexpressed. Neither deletion nor overexpression of LtaS altered 1771 or compound 13 susceptibility; however, overexpression of LtaS increased the MIC of Congo red, a previously identified LtaS inhibitor. These data were further supported by comparing the docking poses of 1771 and derivatives in the LtaS active site, which indicated the possibility of an additional target(s). Finally, we show that both 1771 and compound 13 have activity that is independent of LtaS, extending to cover Gram-negative species if the outer membrane is first permeabilized, challenging the classification that these compounds are strict LtaS inhibitors.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/química , Mamíferos , Oxidiazóis/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA