Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(22): 9294-9301, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758734

RESUMO

Despite the high gain in peak capacity, online comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry (LC × LC-HRMS) has not yet been widely applied to the analysis of complex protein digests. One reason is the method's reduced sensitivity which can be linked to the high flow rates of the second separation dimension (2D). This results in higher dilution factors and the need for flow splitters to couple to ESI-MS. This study reports proof-of-principle results of the development of an RPLC × RPLC-HRMS method using parallel gradients (2D flow rate of 0.7 mL min-1) and its comparison to shifted gradient methods (2D of 1.4 mL min-1) for the analysis of complex digests using HRMS (QExactive-Plus MS). Shifted and parallel gradients resulted in high surface coverage (SC) and effective peak capacity (SC of 0.6226 and 0.7439 and effective peak capacity of 779 and 757 in 60 min). When applied to a cell line digest sample, parallel gradients allowed higher sensitivity (e.g., average MS intensity increased by a factor of 3), allowing for a higher number of identifications (e.g., about 2600 vs 3900 peptides). In addition, reducing the modulation time to 10 s significantly increased the number of MS/MS events that could be performed. When compared to a 1D-RPLC method, parallel RPLC × RPLC-HRMS methods offered a higher separation performance (FHWH from 0.12 to 0.018 min) with limited sensitivity losses resulting in an increase of analyte identifications (e.g., about 6000 vs 7000 peptides and 1500 vs 1990 proteins).


Assuntos
Espectrometria de Massas , Proteínas , Cromatografia Líquida/métodos , Proteínas/análise , Proteínas/metabolismo , Humanos , Espectrometria de Massas/métodos
2.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835625

RESUMO

Biomarkers are important in the assessment of health and disease, but are poorly studied in still healthy individuals with a (potential) different risk for metabolic disease. This study investigated, first, how single biomarkers and metabolic parameters, functional biomarker and metabolic parameter categories, and total biomarker and metabolic parameter profiles behave in young healthy female adults of different aerobic fitness and, second, how these biomarkers and metabolic parameters are affected by recent exercise in these healthy individuals. A total of 102 biomarkers and metabolic parameters were analysed in serum or plasma samples from 30 young, healthy, female adults divided into a high-fit (V̇O2peak ≥ 47 mL/kg/min, N = 15) and a low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 15) group, at baseline and overnight after a single bout of exercise (60 min, 70% V̇O2peak). Our results show that total biomarker and metabolic parameter profiles were similar between high-fit and low-fit females. Recent exercise significantly affected several single biomarkers and metabolic parameters, mostly related to inflammation and lipid metabolism. Furthermore, functional biomarker and metabolic parameter categories corresponded to biomarker and metabolic parameter clusters generated via hierarchical clustering models. In conclusion, this study provides insight into the single and joined behavior of circulating biomarkers and metabolic parameters in healthy females, and identified functional biomarker and metabolic parameter categories that may be used for the characterisation of human health physiology.


Assuntos
Consumo de Oxigênio , Aptidão Física , Adulto , Humanos , Feminino , Aptidão Física/fisiologia , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Nível de Saúde , Biomarcadores
3.
Am J Physiol Endocrinol Metab ; 322(2): E141-E153, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001658

RESUMO

Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) can possibly serve as a cellular metabolic read-out for lifestyle factors and lifestyle interventions. However, the impact of PBMC composition on PBMC metabolism is not yet clear, neither is the differential impact of a longer-term lifestyle factor versus a short-term lifestyle intervention. We investigated the effect of aerobic fitness level and a recent exercise bout on PBMC metabolism in females. PBMCs from 31 young female adults divided into a high-fit (V̇o2peak ≥ 47 mL/kg/min, n = 15) and low-fit (V̇o2peak ≤ 37 mL/kg/min, n = 16) groups were isolated at baseline and overnight after a single bout of exercise (60 min, 70% V̇o2peak). Oxygen consumption rate (OCR) and glycolytic rate (GR) were measured using extracellular flux (XF) assays and PBMC subsets were characterized using fluorescence-activated cell sorting (FACS). Basal OCR, FCCP-induced OCR, spare respiratory capacity, ATP-linked OCR, and proton leak were significantly higher in high-fit than in low-fit females (all P < 0.01), whereas no significant differences in glycolytic rate (GR) were found (all P > 0.05). A recent exercise bout did not significantly affect GR or OCR parameters (all P > 0.05). The overall PBMC composition was similar between high-fit and low-fit females. Mitochondrial PBMC function was significantly higher in PBMCs from high-fit than from low-fit females, which was unrelated to PBMC composition and not impacted by a recent bout of exercise. Our study reveals a link between PBMC metabolism and levels of aerobic fitness, increasing the relevance of PBMC metabolism as a marker to study the impact of lifestyle factors on human health.NEW & NOTEWORTHY Mitochondrial metabolism was significantly higher in PBMCs from high-fit than from low-fit females. This was unrelated to PBMC composition and not impacted by a recent bout of exercise. Our study reveals a link between PBMC metabolism and levels of aerobic fitness, increasing the relevance of PBMC metabolism as a marker to study the impact of lifestyle factors on human health.


Assuntos
Exercício Físico/fisiologia , Espaço Extracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Prótons , Adolescente , Adulto , Feminino , Citometria de Fluxo/métodos , Glicólise/fisiologia , Humanos , Leucócitos Mononucleares/classificação , Estilo de Vida , Adulto Jovem
4.
J Inherit Metab Dis ; 44(2): 438-449, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32740932

RESUMO

Post-translational protein modifications derived from metabolic intermediates, such as acyl-CoAs, have been shown to regulate mitochondrial function. Patients with a genetic defect in the propionyl-CoA carboxylase (PCC) gene clinically present symptoms related to mitochondrial disorders and are characterised by decreased mitochondrial respiration. Since propionyl-CoA accumulates in PCC deficient patients and protein propionylation can be driven by the level of propionyl-CoA, we hypothesised that protein propionylation could play a role in the pathology of the disease. Indeed, we identified increased protein propionylation due to pathologic propionyl-CoA accumulation in patient-derived fibroblasts and this was accompanied by defective mitochondrial respiration, as was shown by a decrease in complex I-driven respiration. To mimic pathological protein propionylation levels, we exposed cultured fibroblasts, Fao liver cells and C2C12 muscle myotubes to propionate levels that are typically found in these patients. This induced a global increase in protein propionylation and histone protein propionylation and was also accompanied by a decrease in mitochondrial respiration in liver and fibroblasts. However, in C2C12 myotubes propionate exposure did not decrease mitochondrial respiration, possibly due to differences in propionyl-CoA metabolism as compared to the liver. Therefore, protein propionylation could contribute to the pathology in these patients, especially in the liver, and could therefore be an interesting target to pursue in the treatment of this metabolic disease.


Assuntos
Fibroblastos/metabolismo , Metilmalonil-CoA Descarboxilase/genética , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Acidemia Propiônica/genética , Humanos , Fígado/metabolismo , Proteínas de Membrana , Mitocôndrias/enzimologia , Propionatos/metabolismo , Acidemia Propiônica/enzimologia , Processamento de Proteína Pós-Traducional/genética
5.
Eur J Appl Physiol ; 119(8): 1799-1808, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177324

RESUMO

PURPOSE: The recovery of muscle oxygen consumption (m[Formula: see text]O2) after exercise provides a measure of skeletal muscle mitochondrial capacity, as more and better-functioning mitochondria will be able to restore m[Formula: see text]O2 faster to the pre-exercise state. The aim was to measure muscle mitochondrial capacity using near-infrared spectroscopy (NIRS) within a healthy, normally active population and relate this to parameters of aerobic fitness, investigating the applicability and relevance of using NIRS to assess muscle mitochondrial capacity non-invasively. METHODS: Mitochondrial capacity was analysed in the gastrocnemius and flexor digitorum superficialis (FDS) muscles of eight relatively high-aerobic fitness ([Formula: see text]O2peak ≥ 57 mL/kg/min) and eight relatively low-aerobic fitness male subjects ([Formula: see text]O2peak ≤ 47 mL/kg/min). Recovery of whole body [Formula: see text]O2, i.e. excess post-exercise oxygen consumption (EPOC) was analysed after a cycling protocol. RESULTS: Mitochondrial capacity, as analysed using NIRS, was significantly higher in high-fitness individuals compared to low-fitness individuals in the gastrocnemius, but not in the FDS (p = 0.0036 and p = 0.20, respectively). Mitochondrial capacity in the gastrocnemius was significantly correlated with [Formula: see text]O2peak (R2 = 0.57, p = 0.0019). Whole body [Formula: see text]O2 recovery was significantly faster in the high-fitness individuals (p = 0.0048), and correlated significantly with mitochondrial capacity in the gastrocnemius (R2 = 0.34, p = 0.028). CONCLUSION: NIRS measurements can be used to assess differences in mitochondrial muscle oxygen consumption within a relatively normal, healthy population. Furthermore, mitochondrial capacity correlated with parameters of aerobic fitness ([Formula: see text]O2peak and EPOC), emphasising the physiological relevance of the NIRS measurements.


Assuntos
Exercício Físico , Mitocôndrias Musculares/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adolescente , Adulto , Humanos , Masculino , Consumo de Oxigênio , Aptidão Física , Espectroscopia de Luz Próxima ao Infravermelho/normas
6.
Mol Carcinog ; 56(9): 2104-2111, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28418082

RESUMO

Colorectal cancer (CRC) risk is modulated by diet and there is convincing evidence of reduced risk with higher non-digestible carbohydrates (NDCs) consumption. Resistant starch (RS), a NDC, positively modulates the expression of oncogenic microRNAs, suggesting that this could be a mechanism through which NDCs protect against CRC. The present study aimed to investigate the effects of supplementation with two NDCs, RS, and polydextrose (PD), on microRNA expression in the macroscopically-normal human rectal epithelium using samples from the DISC Study, a randomized, double-blind, placebo-controlled dietary intervention. We screened 1008 miRNAs in pooled post-intervention rectal mucosal samples from participants allocated to the double placebo group and those supplemented with both RS and PD. A total of 111 miRNAs were up- or down-regulated by at least twofold in the RS + PD group compared with the control group. From these, eight were selected for quantification in individual participant samples by qPCR, and fold-change direction was consistent with the array for seven miRNAs. The inconsistency for miR-133b and the lower fold-change values observed for the seven miRNAs is probably because qPCR of individual participant samples is a more robust and sensitive method of quantification than the array. miR-32 expression was increased by approximately threefold (P = 0.033) in the rectal mucosa of participants supplemented with RS + PD compared with placebo. miR-32 is involved in the regulation of processes such as cell proliferation that are dysregulated in CRC. Furthermore, miR-32 may affect non-canonical NF-κB signaling via regulation of TRAF3 expression and consequently NIK stabilization.


Assuntos
Colo/efeitos dos fármacos , Suplementos Nutricionais , Glucanos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , MicroRNAs/biossíntese , Reto/efeitos dos fármacos , Amido/farmacologia , Adulto , Idoso , Colo/metabolismo , Digestão , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Reto/metabolismo
7.
Drug Discov Today ; 28(4): 103520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754144

RESUMO

There is increasing interest in clinical trials that use technologies and other innovative operational approaches to organise trial activities around trial participants instead of investigator sites. A range of terms has been introduced to refer to this operational clinical trial model, including virtual, digital, remote, and decentralised clinical trials (DCTs). However, this lack of standardised terminology can cause confusion over what a particular trial model entails and for what purposes it can be used, hampering discussions by stakeholders on its acceptability and suitability. Here, we review the different terms described in the scientific literature, advocate the consistent use of a unified term, 'decentralised clinical trial,' and provide a detailed definition of this term.


Assuntos
Assistência Centrada no Paciente , Humanos , Consenso
8.
J Am Coll Cardiol ; 81(14): 1353-1364, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37019582

RESUMO

BACKGROUND: Statin use may exacerbate exercise-induced skeletal muscle injury caused by reduced coenzyme Q10 (CoQ10) levels, which are postulated to produce mitochondrial dysfunction. OBJECTIVES: We determined the effect of prolonged moderate-intensity exercise on markers of muscle injury in statin users with and without statin-associated muscle symptoms. We also examined the association between leukocyte CoQ10 levels and muscle markers, muscle performance, and reported muscle symptoms. METHODS: Symptomatic (n = 35; age 62 ± 7 years) and asymptomatic statin users (n = 34; age 66 ± 7 years) and control subjects (n = 31; age 66 ± 5 years) walked 30, 40, or 50 km/d for 4 consecutive days. Muscle injury markers (lactate dehydrogenase, creatine kinase, myoglobin, cardiac troponin I, and N-terminal pro-brain natriuretic peptide), muscle performance, and reported muscle symptoms were assessed at baseline and after exercise. Leukocyte CoQ10 was measured at baseline. RESULTS: All muscle injury markers were comparable at baseline (P > 0.05) and increased following exercise (P < 0.001), with no differences in the magnitude of exercise-induced elevations among groups (P > 0.05). Muscle pain scores were higher at baseline in symptomatic statin users (P < 0.001) and increased similarly in all groups following exercise (P < 0.001). Muscle relaxation time increased more in symptomatic statin users than in control subjects following exercise (P = 0.035). CoQ10 levels did not differ among symptomatic (2.3 nmol/U; IQR: 1.8-2.9 nmol/U), asymptomatic statin users (2.1 nmol/U; IQR: 1.8-2.5 nmol/U), and control subjects (2.1 nmol/U; IQR: 1.8-2.3 nmol/U; P = 0.20), and did not relate to muscle injury markers, fatigue resistance, or reported muscle symptoms. CONCLUSIONS: Statin use and the presence of statin-associated muscle symptoms does not exacerbate exercise-induced muscle injury after moderate exercise. Muscle injury markers were not related to leukocyte CoQ10 levels. (Exercise-induced Muscle Damage in Statin Users; NCT05011643).


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Humanos , Pessoa de Meia-Idade , Idoso , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ubiquinona , Músculo Esquelético , Exercício Físico , Creatina Quinase
9.
J Cachexia Sarcopenia Muscle ; 12(5): 1214-1231, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34219410

RESUMO

BACKGROUND: Due to the interaction between skeletal muscle ageing and lifestyle factors, it is often challenging to attribute the decline in muscle mass and quality to either changes in lifestyle or to advancing age itself. Because many of the physiological factors affecting muscle mass and quality are modulated by physical activity and physical activity declines with age, the aim of this study is to better understand the effects of early ageing on muscle function by comparing a population of healthy older and young males with similar physical activity patterns. METHODS: Eighteen older (69 ± 2.0 years) and 20 young (22 ± 2.0 years) males were recruited based on similar self-reported physical activity, which was verified using accelerometry measurements. Gene expression profiles of vastus lateralis biopsies obtained by RNA sequencing were compared, and key results were validated using quantitative polymerase chain reaction and western blot. RESULTS: Total physical activity energy expenditure was similar between the young and old group (404 ± 215 vs. 411 ± 189 kcal/day, P = 0.11). Three thousand seven hundred ninety-seven differentially expressed coding genes (DEGs) were identified (adjusted P-value cut-off of <0.05), of which 1891 were higher and 1906 were lower expressed in the older muscle. The matrisome, innervation and inflammation were the main upregulated processes, and oxidative metabolism was the main downregulated process in old compared with young muscle. Lower protein levels of mitochondrial transcription factor A (TFAM, P = 0.030) and mitochondrial respiratory Complexes IV and II (P = 0.011 and P = 0.0009, respectively) were observed, whereas a trend was observed for Complex I (P = 0.062), in older compared with young muscle. Protein expression of Complexes I and IV was significantly correlated to mitochondrial capacity in the vastus lateralis as measured in vivo (P = 0.017, R2  = 0.42 and P = 0.030, R2  = 0.36). A trend for higher muscle-specific receptor kinase (MUSK) protein levels in the older group was observed (P = 0.08). CONCLUSIONS: There are clear differences in the transcriptome signatures of the vastus lateralis muscle of healthy older and young males with similar physical activity levels, including significant differences at the protein level. By disentangling physical activity and ageing, we appoint early skeletal muscle ageing processes that occur despite similar physical activity. Improved understanding of these processes will be key to design targeted anti-ageing therapies.


Assuntos
Exercício Físico , Músculo Esquelético , Idoso , Envelhecimento , Humanos , Masculino , Músculo Esquelético/metabolismo , Estresse Oxidativo , Músculo Quadríceps/metabolismo , Adulto Jovem
10.
Nutrients ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34836352

RESUMO

High-fitness individuals have been suggested to be at risk of a poor vitamin B2 (riboflavin) status due to a potentially higher vitamin B2 demand, as measured by the erythrocyte glutathione reductase (EGR) activation coefficient (EGRAC). Longer-term exercise interventions have been shown to result in a lower vitamin B2 status, but studies are contradictory. Short-term exercise effects potentially contribute to discrepancies between studies but have only been tested in limited study populations. This study investigated if vitamin B2 status, measured by EGRAC, is affected by a single exercise bout in females who differ in fitness levels, and that represents long-term physical activity. At baseline and overnight after a 60-min cycling bout at 70% V·O2peak, EGR activity and EGRAC were measured in 31 young female adults, divided into a high-fit (V·O2peak ≥ 47 mL/kg/min, N = 15) and low-fit (V·O2peak ≤ 37 mL/kg/min, N = 16) group. A single exercise bout significantly increased EGR activity in high-fit and low-fit females (Ptime = 0.006). This response was not affected by fitness level (Ptime*group = 0.256). The effect of exercise on EGRAC was not significant (Ptime = 0.079) and not influenced by EGR activity. The exercise response of EGRAC was not significantly different between high-fit and low-fit females (Ptime*group = 0.141). Thus, a single exercise bout increased EGR activity, but did not affect EGRAC, indicating that vitamin B2 status was not affected. The exercise response on EGRAC and EGR did not differ between high-fit and low-fit females.


Assuntos
Exercício Físico/fisiologia , Estado Nutricional/fisiologia , Aptidão Física/fisiologia , Riboflavina/sangue , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Deficiência de Riboflavina/sangue , Deficiência de Riboflavina/etiologia , Adulto Jovem
11.
Mech Ageing Dev ; 196: 111495, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932454

RESUMO

Protein acylation via metabolic acyl-CoA intermediates provides a link between cellular metabolism and protein functionality. A process in which acetyl-CoA and acetylation are fine-tuned is during myogenic differentiation. However, the roles of other protein acylations remain unknown. Protein propionylation could be functionally relevant because propionyl-CoA can be derived from the catabolism of amino acids and fatty acids and was shown to decrease during muscle differentiation. We aimed to explore the potential role of protein propionylation in muscle differentiation, by mimicking a pathophysiological situation with high extracellular propionate which increases propionyl-CoA and protein propionylation, rendering it a model to study increased protein propionylation. Exposure to extracellular propionate, but not acetate, impaired myogenic differentiation in C2C12 cells and propionate exposure impaired myogenic differentiation in primary human muscle cells. Impaired differentiation was accompanied by an increase in histone propionylation as well as histone acetylation. Furthermore, chromatin immunoprecipitation showed increased histone propionylation at specific regulatory myogenic differentiation sites of the Myod gene. Intramuscular propionylcarnitine levels are higher in old compared to young males and females, possibly indicating increased propionyl-CoA levels with age. The findings suggest a role for propionylation and propionyl-CoA in regulation of muscle cell differentiation and ageing, possibly via alterations in histone acylation.


Assuntos
Acil Coenzima A/metabolismo , Envelhecimento/fisiologia , Histonas/metabolismo , Fibras Musculares Esqueléticas/enzimologia , Acetilcoenzima A/metabolismo , Acilação/fisiologia , Diferenciação Celular , Linhagem Celular , Histona Acetiltransferases/metabolismo , Humanos , Proteína MyoD/metabolismo , Propionatos/metabolismo , Processamento de Proteína Pós-Traducional
12.
Physiol Rep ; 9(9): e14838, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33991439

RESUMO

The recovery of muscle oxygen consumption (m V˙ O2 ) after exercise measured using near-infrared spectroscopy (NIRS) provides a measure of skeletal muscle mitochondrial capacity. Nevertheless, due to sex differences in factors that can influence scattering and thus penetration depth of the NIRS signal in the tissue, e.g., subcutaneous adipose tissue thickness and intramuscular myoglobin and hemoglobin, it is unknown whether results in males can be extrapolated to a female population. Therefore, the aim of this study was to measure skeletal muscle mitochondrial capacity in females at different levels of aerobic fitness to test whether NIRS can measure relevant differences in mitochondrial capacity. Mitochondrial capacity was analyzed in the gastrocnemius muscle and the wrist flexors of 32 young female adults, equally divided in relatively high ( V˙ O2 peak ≥ 47 ml/kg/min) and relatively low aerobic fitness group ( V˙ O2 peak ≤ 37 ml/kg/min). m V˙ O2 recovery was significantly faster in the high- compared to the low-fitness group in the gastrocnemius, but not in the wrist flexors (p = 0.009 and p = 0.0528, respectively). Furthermore, V˙ O2 peak was significantly correlated to m V˙ O2 recovery in both gastrocnemius (R2  = 0.27, p = 0.0051) and wrist flexors (R2  = 0.13, p = 0.0393). In conclusion, NIRS measurements can be used to assess differences in mitochondrial capacity within a female population and is correlated to V˙ O2 peak. This further supports NIRS assessment of muscle mitochondrial capacity providing additional evidence for NIRS as a promising approach to monitor mitochondrial capacity, also in an exclusively female population.


Assuntos
Exercício Físico , Mitocôndrias Musculares/metabolismo , Aptidão Física , Adolescente , Adulto , Feminino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho
13.
Sci Rep ; 11(1): 1662, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462298

RESUMO

Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) provides key opportunities to study the pathophysiology of several diseases, such as type 2 diabetes, obesity and cancer. Extracellular flux (XF) assays provide dynamic metabolic analysis of living cells that can capture ex vivo cellular metabolic responses to biological stressors. To obtain reliable data from PBMCs from individuals, novel methods are needed that allow for standardization and take into account the non-adherent and highly dynamic nature of PBMCs. We developed a novel method for extracellular flux analysis of PBMCs, where we combined brightfield imaging with metabolic flux analysis and data integration in R. Multiple buffy coat donors were used to demonstrate assay linearity with low levels of variation. Our method allowed for accurate and precise estimation of XF assay parameters by reducing the standard score and standard score interquartile range of PBMC basal oxygen consumption rate and glycolytic rate. We applied our method to freshly isolated PBMCs from sixteen healthy subjects and demonstrated that our method reduced the coefficient of variation in group mean basal oxygen consumption rate and basal glycolytic rate, thereby decreasing the variation between PBMC donors. Our novel brightfield image procedure is a robust, sensitive and practical normalization method to reliably measure, compare and extrapolate XF assay data using PBMCs, thereby increasing the relevance for PBMCs as marker tissue in future clinical and biological studies, and enabling the use of primary blood cells instead of immortalized cell lines for immunometabolic experiments.


Assuntos
Análise Química do Sangue/métodos , Glicólise , Leucócitos Mononucleares/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Adolescente , Adulto , Animais , Análise Química do Sangue/instrumentação , Análise Química do Sangue/normas , Feminino , Humanos , Adulto Jovem
14.
Geroscience ; 42(1): 299-310, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31858399

RESUMO

Mitochondrial capacity is pivotal to skeletal muscle function and is suggested to decline with age. However, there is large heterogeneity in current data, possibly due to effect modifiers such as physical activity, sex and muscle group. Yet, few studies have compared multiple muscle groups in different age groups with comparable physical activity levels. Here, we newly used near-infrared spectroscopy (NIRS) to characterise mitochondrial capacity in three different locomotor muscles in young (19-25 year) and older (65-71 year), healthy males with similar physical activity levels. Mitochondrial capacity and reperfusion after arterial occlusion was measured in the vastus lateralis (VL), the gastrocnemius (GA) and the tibialis anterior (TA). Physical activity was verified using accelerometry and was not different between the age groups (404.3 ± 214.9 vs 494.9 ± 187.0 activity kcal per day, p = 0.16). Mitochondrial capacity was significantly lower in older males in the GA and VL, but not in the TA (p = 0.048, p = 0.036 and p = 0.64, respectively). Reperfusion rate was not significantly different for the GA (p = 0.55), but was significantly faster in the TA and VL in the young group compared to the older group (p = 0.0094 and p = 0.039, respectively). In conclusion, we identified distinct modes of mitochondrial ageing in different locomotor muscles in a young and older population with similar physical activity patterns. Furthermore, we show that NIRS is suitable for relatively easy application in ageing research and can reveal novel insights into mitochondrial functioning with age.


Assuntos
Exercício Físico , Consumo de Oxigênio , Idoso , Envelhecimento , Humanos , Masculino , Músculo Esquelético/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA