Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 611(7936): 563-569, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352220

RESUMO

Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.


Assuntos
Regulação da Expressão Gênica , Hepatócitos , Fígado , Malária , Parasitos , Plasmodium berghei , Análise de Célula Única , Animais , Hepatócitos/citologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Fígado/anatomia & histologia , Fígado/citologia , Fígado/imunologia , Fígado/parasitologia , Malária/genética , Malária/imunologia , Malária/parasitologia , Parasitos/genética , Parasitos/imunologia , Parasitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Plasmodium berghei/metabolismo , Imagem Individual de Molécula , Análise de Sequência de RNA , Ferro/metabolismo , Ácidos Graxos/metabolismo , Transcrição Gênica , Genes de Protozoários/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia
2.
Methods Mol Biol ; 2742: 151-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165622

RESUMO

Emerging organoid research is paving way for studies in infectious diseases. Described here is a technique for the generation of stem-cell derived organoids for human small intestine and lung together with methods to infect such organoids with a mock pathogen (Cryptosporidium parvum). Such systems are amenable to imaging and processing for molecular biological analyses. It is the intent of this chapter to provide a simple, routine organoid procedure so that in vitro studies with Borrelia such as cell invasion and dissemination can be conducted.


Assuntos
Doenças Transmissíveis , Criptosporidiose , Cryptosporidium , Humanos , Organoides , Intestino Delgado
3.
Trends Parasitol ; 39(6): 445-460, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061442

RESUMO

Malaria is a febrile illness caused by species of the protozoan parasite Plasmodium and is characterized by recursive infections of erythrocytes, leading to clinical symptoms and pathology. In mammals, Plasmodium parasites undergo a compulsory intrahepatic development stage before infecting erythrocytes. Liver-stage parasites have a metabolic configuration to facilitate the replication of several thousand daughter parasites. Their metabolism is of interest to identify cellular pathways essential for liver infection, to kill the parasite before onset of the disease. In this review, we summarize the current knowledge on nutrient acquisition and biosynthesis by liver-stage parasites mostly generated in murine malaria models, gaps in knowledge, and challenges to create a holistic view of the development and deficiencies in this field.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Camundongos , Plasmodium/metabolismo , Fígado/parasitologia , Malária/parasitologia , Parasitos/metabolismo , Eritrócitos/parasitologia , Proteínas de Protozoários/metabolismo , Mamíferos
4.
iScience ; 25(5): 104281, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573190

RESUMO

Parasite-derived PVM-resident proteins are critical for complete parasite development inside hepatocytes, although the function of most of these proteins remains unknown. Here, we show that the upregulated in infectious sporozoites 4 (UIS4) protein, resident at the PVM, interacts with the host cell actin. By suppressing filamentous actin formation, UIS4 avoids parasite elimination. Host cell actin dynamics increases around UIS4-deficient parasites, which is associated with subsequent parasite elimination. Notably, parasite elimination is impaired significantly by the inhibition of host myosin-II, possibly through relieving the compression generated by actomyosin complexes at the host-parasite interface. Together, these data reveal that UIS4 has a critical role in the evasion of host defensive mechanisms, enabling hence EEF survival and development.

5.
Cell Rep ; 39(9): 110886, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649358

RESUMO

Intracellular pathogens manipulate host cells to survive and thrive. Cellular sensing and signaling pathways are among the key host machineries deregulated to favor infection. In this study, we show that liver-stage Plasmodium parasites compete with the host to sequester a host endosomal-adaptor protein (APPL1) known to regulate signaling in response to endocytosis. The enrichment of APPL1 at the parasitophorous vacuole membrane (PVM) involves an atypical Plasmodium Rab5 isoform (Rab5b). Depletion of host APPL1 alters neither the infection nor parasite development; however, upon overexpression of a GTPase-deficient host Rab5 mutant (hRab5_Q79L), the parasites are smaller and their PVM is stripped of APPL1. Infection with the GTPase-deficient Plasmodium berghei Rab5b mutant (PbRab5b_Q91L) in this case rescues the PVM APPL1 signal and parasite size. In summary, we observe a robust correlation between the level of APPL1 retention at the PVM and parasite size during exoerythrocytic development.


Assuntos
Parasitos , Plasmodium berghei , Animais , Endocitose , GTP Fosfo-Hidrolases/metabolismo , Fígado/metabolismo
6.
Commun Biol ; 3(1): 688, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214643

RESUMO

The malaria parasite Plasmodium obligatorily infects and replicates inside hepatocytes surrounded by a parasitophorous vacuole membrane (PVM), which is decorated by the host-cell derived autophagy protein LC3. We have previously shown that the parasite-derived, PVM-resident protein UIS3 sequesters LC3 to avoid parasite elimination by autophagy from hepatocytes. Here we show that a small molecule capable of disrupting this interaction triggers parasite elimination in a host cell autophagy-dependent manner. Molecular docking analysis of more than 20 million compounds combined with a phenotypic screen identified one molecule, C4 (4-{[4-(4-{5-[3-(trifluoromethyl) phenyl]-1,2,4-oxadiazol-3-yl}benzyl)piperazino]carbonyl}benzonitrile), capable of impairing infection. Using biophysical assays, we established that this impairment is due to the ability of C4 to disrupt UIS3-LC3 interaction, thus inhibiting the parasite's ability to evade the host autophagy response. C4 impacts infection in autophagy-sufficient cells without harming the normal autophagy pathway of the host cell. This study, by revealing the disruption of a critical host-parasite interaction without affecting the host's normal function, uncovers an efficient anti-malarial strategy to prevent this deadly disease.


Assuntos
Antimaláricos/farmacologia , Proteínas de Membrana/metabolismo , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/uso terapêutico , Autofagia , Adesão Celular , Bases de Dados de Compostos Químicos , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Masculino , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química
7.
Nat Commun ; 7: 10403, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786069

RESUMO

Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 µM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host.


Assuntos
Ferro/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Animais , Linhagem Celular , Genótipo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA