Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542343

RESUMO

The TAMs are a subfamily of receptor tyrosine kinases (RTKs) comprised of three members, Tyro3, Axl and Mer. Evidence in support of the existence of this subfamily emerged from a screen for novel RTKs performed in the laboratory of Dr. Greg Lemke in 1991. A PCR-based approach to selectively amplify tyrosine kinase-specific genes yielded 27 different tyrosine kinase genes, of which 13 were novel (the "Tyros"). Of these, Tyro3, 7 and 12 were more closely related to each other than to any other kinases and it was proposed that they constituted a novel subfamily of RTKs. Additional support for this hypothesis required determining the complete sequences for these receptor tyrosine kinases. By the end of 1991, full-length sequences for Tyro7 (Axl) revealed a unique extracellular domain organization that included two immunoglobulin-like domains and two fibronectin type III repeats. In 1994, the complete sequences for Tyro12 (Mer) and Tyro3 were shown to have an extracellular region domain structure similar to that of Axl. In 1995, Gas6 and Pros1 were reported as ligands for Tyro3 and Axl, setting the stage for functional studies. The Lemke lab and its many trainees have since played leading roles in elucidating the physiological relevance of the TAMs.


Assuntos
Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas , c-Mer Tirosina Quinase/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/química , Tamoxifeno , Tirosina
3.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26136453

RESUMO

The current understanding of the activity of mammalian pheromones is that endocrine and behavioural effects are limited to the exposed individuals. Here, we demonstrate that the nasal exposure of female mice to a male murine pheromone stimulates expansion of mammary glands, leading to prolonged nursing of pups. Subsequent behavioural testing of the pups from pheromone-exposed dams exhibited enhanced learning. Sialic acid components in the milk are known to be involved in brain development. We hypothesized that the offspring might have received more of this key nutrient that promotes brain development. The mRNA for polysialyltransferase, which produces polysialylated neural cell adhesion molecules related to brain development,was increased in the brain of offspring of pheromone-exposed dams at post-natal day 10, while it was not different at embryonic stages, indicating possible differential brain development during early post-natal life.


Assuntos
Cognição/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos/fisiologia , Feromônios/metabolismo , Tiazóis/metabolismo , Animais , Feminino , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL
4.
Biochem Soc Trans ; 42(4): 882-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109973

RESUMO

Enhancement of adult neurogenesis in female mice was previously demonstrated through exposure to soiled bedding from males, although the identity of relevant chemosignals has remained unknown. The farnesenes and SBT (2-sec-butyl-4,5-dihydrothiazole) are male murine pheromones that dominant males secrete at higher levels. Previous studies have shown that they induce oestrus in female mice. We have recently shown that these pheromones strongly increase cell proliferation in the SVZ (subventricular zone) of adult female mice. In addition, we found that a female murine pheromone, 2,5-dimethylpyrazine, facilitates similar changes in males. 2,5-dimethylpyrazine is a female pheromone that is secreted when females are housed in large groups and it was originally found to suppress oestrus in females. We found that it does not have suppressive effect on the cell proliferation in the SVZ of females. Similarly, male murine pheromones, SBT and the farnesenes, do not show a suppressive effect on the cell proliferation in the SVZ of males. Our results demonstrated that pheromonal communication between males and females has strong stimulatory effect on both the reproductive physiology and brain cell proliferation, but intrasex pheromonal exchanges do not reduce progenitor proliferation in these brain regions.


Assuntos
Proliferação de Células/fisiologia , Ventrículos Laterais/metabolismo , Feromônios/metabolismo , Animais , Feminino , Masculino , Camundongos , Neurogênese/fisiologia , Reprodução/fisiologia
5.
Proc Natl Acad Sci U S A ; 107(3): 1211-6, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080551

RESUMO

Neuregulin 1 (NRG1) is a trophic factor thought to play a role in neural development. Recent studies suggest that it may regulate neurotransmission, mechanisms of which remain elusive. Here we show that NRG1, via stimulating GABA release from interneurons, inhibits pyramidal neurons in the prefrontal cortex (PFC). Ablation of the NRG1 receptor ErbB4 in parvalbumin (PV)-positive interneurons prevented NRG1 from stimulating GABA release and from inhibiting pyramidal neurons. PV-ErbB4(-/-) mice exhibited schizophrenia-relevant phenotypes similar to those observed in NRG1 or ErbB4 null mutant mice, including hyperactivity, impaired working memory, and deficit in prepulse inhibition (PPI) that was ameliorated by diazepam, a GABA enhancer. These results indicate that NRG1 regulates the activity of pyramidal neurons by promoting GABA release from PV-positive interneurons, identifying a critical function of NRG1 in balancing brain activity. Because both NRG1 and ErbB4 are susceptibility genes of schizophrenia, our study provides insight into potential pathogenic mechanisms of schizophrenia and suggests that PV-ErbB4(-/-) mice may serve as a model in the study of this and relevant brain disorders.


Assuntos
Receptores ErbB/fisiologia , Interneurônios/metabolismo , Neuregulina-1/fisiologia , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Animais , Receptores ErbB/genética , Interneurônios/citologia , Memória , Camundongos , Camundongos Knockout , Células Piramidais/citologia , Receptor ErbB-4 , Ácido gama-Aminobutírico/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(50): 21818-23, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21106764

RESUMO

Neuregulin 1 (NRG1) is a trophic factor that acts by stimulating ErbB receptor tyrosine kinases and has been implicated in neural development and synaptic plasticity. In this study, we investigated mechanisms of its suppression of long-term potentiation (LTP) in the hippocampus. We found that NRG1 did not alter glutamatergic transmission at SC-CA1 synapses but increased the GABA(A) receptor-mediated synaptic currents in CA1 pyramidal cells via a presynaptic mechanism. Inhibition of GABA(A) receptors blocked the suppressing effect of NRG1 on LTP and prevented ecto-ErbB4 from enhancing LTP, implicating a role of GABAergic transmission. To test this hypothesis further, we generated parvalbumin (PV)-Cre;ErbB4(-/-) mice in which ErbB4, an NRG1 receptor in the brain, is ablated specifically in PV-positive interneurons. NRG1 was no longer able to increase inhibitory postsynaptic currents and to suppress LTP in PV-Cre;ErbB4(-/-) hippocampus. Accordingly, contextual fear conditioning, a hippocampus-dependent test, was impaired in PV-Cre;ErbB4(-/-) mice. In contrast, ablation of ErbB4 in pyramidal neurons had no effect on NRG1 regulation of hippocampal LTP or contextual fear conditioning. These results demonstrate a critical role of ErbB4 in PV-positive interneurons but not in pyramidal neurons in synaptic plasticity and support a working model that NRG1 suppresses LTP by enhancing GABA release. Considering that NRG1 and ErbB4 are susceptibility genes of schizophrenia, these observations contribute to a better understanding of how abnormal NRG1/ErbB4 signaling may be involved in the pathogenesis of schizophrenia.


Assuntos
Receptores ErbB/metabolismo , Interneurônios/metabolismo , Potenciação de Longa Duração/fisiologia , Neuregulina-1/metabolismo , Parvalbuminas/metabolismo , Animais , Condicionamento Psicológico , Receptores ErbB/genética , Medo , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Receptor ErbB-4 , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Neuron ; 54(4): 599-610, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17521572

RESUMO

Neuregulin-1 (NRG1), a regulator of neural development, has been shown to regulate neurotransmission at excitatory synapses. Although ErbB4, a key NRG1 receptor, is expressed in glutamic acid decarboxylase (GAD)-positive neurons, little is known about its role in GABAergic transmission. We show that ErbB4 is localized at GABAergic terminals of the prefrontal cortex. Our data indicate a role of NRG1, both endogenous and exogenous, in regulation of GABAergic transmission. This effect was blocked by inhibition or mutation of ErbB4, suggesting the involvement of ErbB4. Together, these results indicate that NRG1 regulates GABAergic transmission via presynaptic ErbB4 receptors, identifying a novel function of NRG1. Because both NRG1 and ErbB4 have emerged as susceptibility genes of schizophrenia, these observations may suggest a mechanism for abnormal GABAergic neurotransmission in this disorder.


Assuntos
Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hibridização In Situ , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Neurônios/citologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Cloreto de Potássio/farmacologia , Terminações Pré-Sinápticas/metabolismo , Ratos , Receptor ErbB-4 , Transfecção/métodos
8.
Transl Psychiatry ; 11(1): 144, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627623

RESUMO

Subanesthetic ketamine evokes rapid antidepressant effects in human patients that persist long past ketamine's chemical half-life of ~2 h. Ketamine's sustained antidepressant action may be due to modulation of cortical plasticity. We find that ketamine ameliorates depression-like behavior in the forced swim test in adult mice, and this depends on parvalbumin-expressing (PV) neuron-directed neuregulin-1 (NRG1)/ErbB4 signaling. Ketamine rapidly downregulates NRG1 expression in PV inhibitory neurons in mouse medial prefrontal cortex (mPFC) following a single low-dose ketamine treatment. This NRG1 downregulation in PV neurons co-tracks with the decreases in synaptic inhibition to mPFC excitatory neurons for up to a week. This results from reduced synaptic excitation to PV neurons, and is blocked by exogenous NRG1 as well as by PV targeted ErbB4 receptor knockout. Thus, we conceptualize that ketamine's effects are mediated through rapid and sustained cortical disinhibition via PV-specific NRG1 signaling. Our findings reveal a novel neural plasticity-based mechanism for ketamine's acute and long-lasting antidepressant effects.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Humanos , Ketamina/farmacologia , Camundongos , Neuregulina-1 , Plasticidade Neuronal , Parvalbuminas , Receptor ErbB-4
9.
Front Cell Dev Biol ; 9: 770458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957103

RESUMO

The serotonergic system of mammals innervates virtually all the central nervous system and regulates a broad spectrum of behavioral and physiological functions. In mammals, serotonergic neurons located in the rostral raphe nuclei encompass diverse sub-systems characterized by specific circuitry and functional features. Substantial evidence suggest that functional diversity of serotonergic circuits has a molecular and connectivity basis. However, the landscape of intrinsic developmental mechanisms guiding the formation of serotonergic sub-systems is unclear. Here, we employed developmental disruption of gene expression specific to serotonergic subsets to probe the contribution of the tyrosine kinase receptor ErbB4 to serotonergic circuit formation and function. Through an in vivo loss-of-function approach, we found that ErbB4 expression occurring in a subset of serotonergic neurons, is necessary for axonal arborization of defined long-range projections to the forebrain but is dispensable for the innervation of other targets of the serotonergic system. We also found that Erbb4-deletion does not change the global excitability or the number of neurons with serotonin content in the dorsal raphe nuclei. In addition, ErbB4-deficiency in serotonergic neurons leads to specific behavioral deficits in memory processing that involve aversive or social components. Altogether, our work unveils a developmental mechanism intrinsically acting through ErbB4 in subsets of serotonergic neurons to orchestrate a precise long-range circuit and ultimately involved in the formation of emotional and social memories.

10.
Mol Neurobiol ; 57(8): 3568-3588, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32542595

RESUMO

The neuregulins (Nrgs 1-4) are a family of signaling molecules that play diverse roles in the nervous system. Nrg1 has been implicated in the formation of synapses and in synaptic plasticity. Previous studies have shown Nrg1 can affect neurite outgrowth in several neuronal populations, while the role of Nrg2 and Nrg3 in this process has remained understudied. The Nrgs can bind and activate the ErbB4 receptor tyrosine kinase which is preferentially expressed in GABAergic interneurons in the rodent hippocampus and cerebral cortex. In the present study, we evaluated the effects of Nrgs 1, 2, and 3 on neurite outgrowth of dissociated rat cortical ErbB4-positive (+)/GABA+ interneurons in vitro. All three Nrgs were able to promote neurite outgrowth during the first 2 days in vitro, with increases detected for both the axon (116-120%) and other neurites (100-120%). Increases in the average number of primary and secondary neurites were also observed. Treatment with the Nrgs for an additional 3 days promoted an increase in axonal length (86-96%), with only minimal effects on the remaining neurites (8-13%). ErbB4 expression persisted throughout the dendritic arbor and cell soma at all stages examined, while its expression in the axon was transient and declined with cell maturation. ErbB4 overexpression in GABAergic neurons promoted neurite outgrowth, an effect that was potentiated by Nrg treatment. These results show that Nrgs 1, 2, and 3 are each capable of influencing dendritic and axonal growth at early developmental stages in GABAergic neurons grown in vitro.


Assuntos
Interneurônios/metabolismo , Neurregulinas/metabolismo , Crescimento Neuronal/fisiologia , Receptor ErbB-4/metabolismo , Animais , Córtex Cerebral/metabolismo , Receptores ErbB/metabolismo , Feminino , Hipocampo/metabolismo , Neuritos/metabolismo , Plasticidade Neuronal/fisiologia , Ratos Sprague-Dawley , Sinapses/metabolismo
11.
J Comp Neurol ; 528(3): 419-432, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454079

RESUMO

Neuregulins (NRGs) are protein ligands that impact neural development and circuit function. NRGs signal through the ErbB receptor tyrosine kinase family. NRG1/ErbB4 signaling in parvalbumin-expressing (PV) inhibitory interneurons is critical for visual cortical plasticity. There are multiple types of NRGs and ErbBs that can potentially contribute to visual cortical plasticity at different developmental stages. Thus, it is important to understand the normal developmental expression profiles of NRGs and ErbBs in specific neuron types in the visual cortex, and to study whether and how their expression changes in PV inhibitory neurons and excitatory neurons track with sensory perturbation. Cell type-specific translating ribosome affinity purification and qPCR was used to compare mRNA expression of nrg1,2,3,4 and erbB1,2,3,4 in PV and excitatory neurons in mouse visual cortex. We show that the expression of nrg1 and nrg3 decreases in PV neurons at the critical period peak, postnatal day 28 (P28) after monocular deprivation and dark rearing, and in the adult cortex (at P104) after 2-week long dark exposure. In contrast, nrg1 expression by excitatory neurons is unchanged at P28 and P104 following sensory deprivation, whereas nrg3 expression by excitatory neurons shows changes depending on the age and the mode of sensory deprivation. ErbB4 expression in PV neurons remains consistently high and does not appear to change in response to sensory deprivation. These data provide new important details of cell type-specific NRG/ErbB expression in the visual cortex and support that NRG1/ErbB4 signaling is implicated in both critical period and adult visual cortical plasticity.


Assuntos
Interneurônios/metabolismo , Neuregulina-1/biossíntese , Receptor ErbB-4/biossíntese , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Fatores Etários , Animais , Expressão Gênica , Camundongos , Camundongos Transgênicos , Neuregulina-1/genética , Receptor ErbB-4/genética , Privação Sensorial/fisiologia
12.
Curr Biol ; 30(18): 3591-3603.e8, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32822611

RESUMO

Subanesthetic ketamine evokes rapid and long-lasting antidepressant effects in human patients. The mechanism for ketamine's effects remains elusive, but ketamine may broadly modulate brain plasticity processes. We show that single-dose ketamine reactivates adult mouse visual cortical plasticity and promotes functional recovery of visual acuity defects from amblyopia. Ketamine specifically induces downregulation of neuregulin-1 (NRG1) expression in parvalbumin-expressing (PV) inhibitory neurons in mouse visual cortex. NRG1 downregulation in PV neurons co-tracks both the fast onset and sustained decreases in synaptic inhibition to excitatory neurons, along with reduced synaptic excitation to PV neurons in vitro and in vivo following a single ketamine treatment. These effects are blocked by exogenous NRG1 as well as PV targeted receptor knockout. Thus, ketamine reactivation of adult visual cortical plasticity is mediated through rapid and sustained cortical disinhibition via downregulation of PV-specific NRG1 signaling. Our findings reveal the neural plasticity-based mechanism for ketamine-mediated functional recovery from adult amblyopia.


Assuntos
Ambliopia/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Neuregulina-1/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Parvalbuminas/metabolismo , Córtex Visual/efeitos dos fármacos , Ambliopia/metabolismo , Ambliopia/patologia , Animais , Feminino , Masculino , Camundongos , Neuregulina-1/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Córtex Visual/patologia
13.
J Comp Neurol ; 527(4): 797-817, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328115

RESUMO

Neuregulin-3 (Nrg3) is a member of the Nrg family of growth factors identified as risk factors for schizophrenia. There are three Nrgs expressed in the nervous system (Nrg1-3) and of these Nrg1 has been the best characterized. To set the groundwork for elucidating neural roles for Nrg3, we studied its expression in the rat brain at both the RNA and protein levels. Using an antibody developed against Nrg3, we observed a developmental increase of Nrg3 protein expression from embryonic stages to adulthood and determined that it carries O-linked carbohydrates. In cortical neuronal cultures, transfected Neuro2a cells, and brain tissue sections Nrg3 protein was localized to the soma, neurites, and to the Golgi apparatus, where it is prominently expressed. Nrg3 was detected in excitatory, GABAergic and parvalbumin-expressing inhibitory neurons while expression in glia was limited. Nrg3 mRNA and protein were widely expressed during both embryonic and postnatal ages. At E17, Nrg3 was detected within the cortical plate and ventricular zone suggesting possible roles in cell proliferation or migration. At postnatal ages, Nrg3 was abundantly expressed throughout the cerebral cortex and hippocampus. Multiple thalamic nuclei expressed Nrg3, while detection in the striatum was limited. In the cerebellum, Nrg3 was found in both Purkinje cells and granule neurons. In the rodent brain, Nrg3 is the most abundantly expressed of the Nrgs and its patterns of expression differ both temporally and spatially from that of Nrg1 and Nrg2. These findings suggest that Nrg3 plays roles that are distinct from the other Nrg family members.


Assuntos
Encéfalo/metabolismo , Neurregulinas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Ratos , Ratos Sprague-Dawley
14.
Neuron ; 44(2): 251-61, 2004 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-15473965

RESUMO

Most cortical interneurons arise from the subcortical telencephalon, but the molecules that control their migration remain largely unidentified. Here, we show that different isoforms of Neuregulin-1 are expressed in the developing cortex and in the route that migrating interneurons follow toward the cortex, whereas a population of the migrating interneurons express ErbB4, a receptor for Neuregulin-1. The different isoforms of Neuregulin-1 act as short- and long-range attractants for migrating interneurons, and perturbing ErbB4 function in vitro decreases the number of interneurons that tangentially migrate to the cortex. In vivo, loss of Neuregulin-1/ErbB4 signaling causes an alteration in the tangential migration of cortical interneurons and a reduction in the number of GABAergic interneurons in the postnatal cortex. These observations provide evidence that Neuregulin-1 and its ErbB4 receptor directly control neuronal migration in the nervous system.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Interneurônios/fisiologia , Neuregulina-1/fisiologia , Animais , Células COS , Chlorocebus aethiops , Receptores ErbB/metabolismo , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/fisiologia , Receptor ErbB-4 , Transdução de Sinais
15.
Curr Biol ; 15(9): R332-4, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15886089

RESUMO

Neuregulin signaling through ErbB receptors is known to play an essential role in Schwann cell proliferation, survival and myelination. Recent studies in zebrafish provide a peek at living Schwann cells migrating along axons in vivo and suggest that ErbB signaling, while not required for cell movement per se, is required to maintain the directed migration of these cells.


Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Bainha de Mielina/metabolismo , Neurregulinas/metabolismo , Células de Schwann/fisiologia , Transdução de Sinais/fisiologia , Animais , Mutação/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Células de Schwann/metabolismo , Peixe-Zebra
16.
Nat Neurosci ; 7(12): 1319-28, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15543145

RESUMO

Neural progenitor proliferation, differentiation and migration are continually active in the rostral migratory stream of the adult brain. Here, we show that the receptor tyrosine kinase ErbB4 is expressed prominently by the neuroblasts present in the subventricular zone and the rostral migratory stream. The neuregulins (NRG1-NRG3), which have been identified as ErbB4 ligands, are detected either in the stream or in adjacent regions. Mice deficient in ErbB4 expressed under the control of either the nestin or the hGFAP promoter have altered neuroblast chain organization and migration and deficits in the placement and differentiation of olfactory interneurons. These findings suggest that ErbB4 activation helps to regulate the organization of neural chains that form the rostral migratory stream and influences the differentiation of olfactory interneuronal precursors.


Assuntos
Movimento Celular/fisiologia , Receptores ErbB/fisiologia , Neurônios/citologia , Prosencéfalo/citologia , Animais , Animais Recém-Nascidos , Receptores ErbB/biossíntese , Receptores ErbB/genética , Camundongos , Camundongos Knockout , Neurônios/enzimologia , Prosencéfalo/enzimologia , Prosencéfalo/crescimento & desenvolvimento , Receptor ErbB-4
17.
Mol Biol Cell ; 13(11): 3890-900, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12429833

RESUMO

Cohesion between sister chromatids is a prerequisite for accurate chromosome segregation during mitosis and meiosis. To allow chromosome condensation during prophase, the connections that hold sister chromatids together must be maintained but still permit extensive chromatin compaction. In Drosophila, null mutations in the orientation disruptor (ord) gene lead to meiotic nondisjunction in males and females because cohesion is absent by the time that sister kinetochores make stable microtubule attachments. We provide evidence that ORD is concentrated within the extrachromosomal domains of the nuclei of Drosophila primary spermatocytes during early G2, but accumulates on the meiotic chromosomes by mid to late G2. Moreover, using fluorescence in situ hybridization to monitor cohesion directly, we show that cohesion defects first become detectable in ord(null) spermatocytes shortly after the time when wild-type ORD associates with the chromosomes. After condensation, ORD remains bound at the centromeres of wild-type spermatocytes and persists there until centromeric cohesion is released during anaphase II. Our results suggest that association of ORD with meiotic chromosomes during mid to late G2 is required to maintain sister-chromatid cohesion during prophase condensation and that retention of ORD at the centromeres after condensation ensures the maintenance of centromeric cohesion until anaphase II.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Meiose/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Feminino , Hibridização in Situ Fluorescente , Masculino , Não Disjunção Genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espermatócitos/citologia , Espermatócitos/fisiologia , Espermatogênese/fisiologia
18.
Neuron ; 92(1): 160-173, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27641496

RESUMO

Experience alters cortical networks through neural plasticity mechanisms. During a developmental critical period, the most dramatic consequence of occluding vision through one eye (monocular deprivation) is a rapid loss of excitatory synaptic inputs to parvalbumin-expressing (PV) inhibitory neurons in visual cortex. Subsequent cortical disinhibition by reduced PV cell activity allows for excitatory ocular dominance plasticity. However, the molecular mechanisms underlying critical period synaptic plasticity are unclear. Here we show that brief monocular deprivation during the critical period downregulates neuregulin-1(NRG1)/ErbB4 signaling in PV neurons, causing retraction of excitatory inputs to PV neurons. Exogenous NRG1 rapidly restores excitatory inputs onto deprived PV cells through downstream PKC-dependent activation and AMPA receptor exocytosis, thus enhancing PV neuronal inhibition to excitatory neurons. NRG1 treatment prevents the loss of deprived eye visual cortical responsiveness in vivo. Our findings reveal molecular, cellular, and circuit mechanisms of NRG1/ErbB4 in regulating the initiation of critical period visual cortical plasticity.


Assuntos
Dominância Ocular/fisiologia , Neuregulina-1/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptor ErbB-4/fisiologia , Córtex Visual/fisiologia , Animais , Período Crítico Psicológico , Regulação para Baixo/fisiologia , Feminino , Masculino , Camundongos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neuregulina-1/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Privação Sensorial/fisiologia , Córtex Visual/crescimento & desenvolvimento
19.
Cold Spring Harb Protoc ; 2015(2): 180-90, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25646493

RESUMO

This protocol introduces the technique of homologous recombination in bacteria to insert a linear DNA fragment into bacterial artificial chromosomes (BACs). Homologous recombination allows the modification of large DNA molecules, in contrast with conventional restriction endonuclease-based strategies, which cleave large DNAs into numerous fragments and are unlikely to permit the precise targeting afforded by recombination-based approaches. The method uses a phage lambda-derived recombination system (using exo, beta, and gam) as well as other enzymatic activities provided by the host (Escherichia coli). In the method described here, a DNA fragment encoding enhanced cyan fluorescent protein is inserted immediately after the start codon of the gene encoding choline acetyltransferase ("ChAT"), the final enzyme in acetylcholine biosynthesis, using homologous recombination between sequences that are present both on the introduced DNA fragment and in the target BAC. The desired recombination products are identified via positive selection for resistance to kanamycin. In principle, the resulting modified BAC could be used to produce transgenic mice that express this fluorescent protein in cholinergic neurons. The approach described here could be used to insert any DNA fragment.


Assuntos
Cromossomos Artificiais Bacterianos , Recombinação Homóloga , Sequência de Bases , Eletroporação , Oligodesoxirribonucleotídeos , Reação em Cadeia da Polimerase
20.
Nat Neurosci ; 18(1): 104-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25501036

RESUMO

Selective processing of behaviorally relevant sensory inputs against irrelevant ones is a fundamental cognitive function whose impairment has been implicated in major psychiatric disorders. It is known that the thalamic reticular nucleus (TRN) gates sensory information en route to the cortex, but the underlying mechanisms remain unclear. Here we show in mice that deficiency of the Erbb4 gene in somatostatin-expressing TRN neurons markedly alters behaviors that are dependent on sensory selection. Whereas the performance of the Erbb4-deficient mice in identifying targets from distractors was improved, their ability to switch attention between conflicting sensory cues was impaired. These behavioral changes were mediated by an enhanced cortical drive onto the TRN that promotes the TRN-mediated cortical feedback inhibition of thalamic neurons. Our results uncover a previously unknown role of ErbB4 in regulating cortico-TRN-thalamic circuit function. We propose that ErbB4 sets the sensitivity of the TRN to cortical inputs at levels that can support sensory selection while allowing behavioral flexibility.


Assuntos
Receptor ErbB-4/fisiologia , Sensação/fisiologia , Filtro Sensorial/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Percepção Auditiva/fisiologia , Comportamento de Escolha , Discriminação Psicológica/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Sinapses/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA