RESUMO
Objective: Large international comparisons describing the clinical characteristics of patients with COVID-19 are limited. The aim of the study was to perform a large-scale descriptive characterization of COVID-19 patients with asthma.Methods: We included nine databases contributing data from January to June 2020 from the US, South Korea (KR), Spain, UK and the Netherlands. We defined two cohorts of COVID-19 patients ('diagnosed' and 'hospitalized') based on COVID-19 disease codes. We followed patients from COVID-19 index date to 30 days or death. We performed descriptive analysis and reported the frequency of characteristics and outcomes in people with asthma defined by codes and prescriptions.Results: The diagnosed and hospitalized cohorts contained 666,933 and 159,552 COVID-19 patients respectively. Exacerbation in people with asthma was recorded in 1.6-8.6% of patients at presentation. Asthma prevalence ranged from 6.2% (95% CI 5.7-6.8) to 18.5% (95% CI 18.2-18.8) in the diagnosed cohort and 5.2% (95% CI 4.0-6.8) to 20.5% (95% CI 18.6-22.6) in the hospitalized cohort. Asthma patients with COVID-19 had high prevalence of comorbidity including hypertension, heart disease, diabetes and obesity. Mortality ranged from 2.1% (95% CI 1.8-2.4) to 16.9% (95% CI 13.8-20.5) and similar or lower compared to COVID-19 patients without asthma. Acute respiratory distress syndrome occurred in 15-30% of hospitalized COVID-19 asthma patients.Conclusion: The prevalence of asthma among COVID-19 patients varies internationally. Asthma patients with COVID-19 have high comorbidity. The prevalence of asthma exacerbation at presentation was low. Whilst mortality was similar among COVID-19 patients with and without asthma, this could be confounded by differences in clinical characteristics. Further research could help identify high-risk asthma patients.[Box: see text]Supplemental data for this article is available online at https://doi.org/10.1080/02770903.2021.2025392 .
Assuntos
Asma , COVID-19 , Diabetes Mellitus , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Asma/epidemiologia , SARS-CoV-2 , Comorbidade , Diabetes Mellitus/epidemiologia , HospitalizaçãoRESUMO
BACKGROUND: A detailed characterization of patients with COVID-19 living with obesity has not yet been undertaken. We aimed to describe and compare the demographics, medical conditions, and outcomes of COVID-19 patients living with obesity (PLWO) to those of patients living without obesity. METHODS: We conducted a cohort study based on outpatient/inpatient care and claims data from January to June 2020 from Spain, the UK, and the US. We used six databases standardized to the OMOP common data model. We defined two non-mutually exclusive cohorts of patients diagnosed and/or hospitalized with COVID-19; patients were followed from index date to 30 days or death. We report the frequency of demographics, prior medical conditions, and 30-days outcomes (hospitalization, events, and death) by obesity status. RESULTS: We included 627 044 (Spain: 122 058, UK: 2336, and US: 502 650) diagnosed and 160 013 (Spain: 18 197, US: 141 816) hospitalized patients with COVID-19. The prevalence of obesity was higher among patients hospitalized (39.9%, 95%CI: 39.8-40.0) than among those diagnosed with COVID-19 (33.1%; 95%CI: 33.0-33.2). In both cohorts, PLWO were more often female. Hospitalized PLWO were younger than patients without obesity. Overall, COVID-19 PLWO were more likely to have prior medical conditions, present with cardiovascular and respiratory events during hospitalization, or require intensive services compared to COVID-19 patients without obesity. CONCLUSION: We show that PLWO differ from patients without obesity in a wide range of medical conditions and present with more severe forms of COVID-19, with higher hospitalization rates and intensive services requirements. These findings can help guiding preventive strategies of COVID-19 infection and complications and generating hypotheses for causal inference studies.
Assuntos
COVID-19/epidemiologia , Obesidade/epidemiologia , Adolescente , Adulto , Idoso , COVID-19/mortalidade , Estudos de Coortes , Comorbidade , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Espanha/epidemiologia , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Adulto JovemRESUMO
OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid coronavirus disease 2019 (COVID-19), but information on their prognosis is lacking. We characterized 30-day outcomes and mortality after hospitalization with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. METHODS: A multinational network cohort study was conducted using electronic health records data from Columbia University Irving Medical Center [USA, Optum (USA), Department of Veterans Affairs (USA), Information System for Research in Primary Care-Hospitalization Linked Data (Spain) and claims data from IQVIA Open Claims (USA) and Health Insurance and Review Assessment (South Korea). All patients with prevalent autoimmune diseases, diagnosed and/or hospitalized between January and June 2020 with COVID-19, and similar patients hospitalized with influenza in 2017-18 were included. Outcomes were death and complications within 30 days of hospitalization. RESULTS: We studied 133 589 patients diagnosed and 48 418 hospitalized with COVID-19 with prevalent autoimmune diseases. Most patients were female, aged ≥50 years with previous comorbidities. The prevalence of hypertension (45.5-93.2%), chronic kidney disease (14.0-52.7%) and heart disease (29.0-83.8%) was higher in hospitalized vs diagnosed patients with COVID-19. Compared with 70 660 hospitalized with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2-4.3% vs 6.32-24.6%). CONCLUSION: Compared with influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality.
Assuntos
Doenças Autoimunes/mortalidade , Doenças Autoimunes/virologia , COVID-19/mortalidade , Hospitalização/estatística & dados numéricos , Influenza Humana/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Estudos de Coortes , Feminino , Humanos , Influenza Humana/imunologia , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , República da Coreia/epidemiologia , SARS-CoV-2 , Espanha/epidemiologia , Estados Unidos/epidemiologia , Adulto JovemRESUMO
OBJECTIVE: Metabolic syndrome (MetS), characterized by abdominal obesity, atherogenic dyslipidaemia, elevated blood pressure and insulin resistance, is a major public health concern in the United States. The effects of apolipoprotein E (Apo E) polymorphism on MetS are not well established. METHODS: We conducted a cross-sectional study consisting of 1551 participants from the National Heart, Lung and Blood Institute Family Heart Study to assess the relation of Apo E polymorphism with the prevalence of MetS. MetS was defined according to the American Heart Association-National Heart, Lung and Blood Institute-International Diabetes Federation-World Health Organization harmonized criteria. We used generalized estimating equations to estimate adjusted odds ratios (ORs) for prevalent MetS and the Bonferroni correction to account for multiple testing in the secondary analysis. RESULTS: Our study population had a mean age (standard deviation) of 56.5 (11.0) years, and 49.7% had MetS. There was no association between the Apo E genotypes and the MetS. The multivariable adjusted ORs (95% confidence interval) were 1.00 (reference), 1.26 (0.31-5.21), 0.89 (0.62-1.29), 1.13 (0.61-2.10), 1.13 (0.88-1.47) and 1.87 (0.91-3.85) for the Æ3/Æ3, Æ2/Æ2, Æ2/Æ3, Æ2/Æ4, Æ3/Æ4 and Æ4/Æ4 genotypes, respectively. In a secondary analysis, Æ2/Æ3 genotype was associated with 41% lower prevalence odds of low high-density lipoprotein [multivariable adjusted ORs (95% confidence interval) = 0.59 (0.36-0.95)] compared with Æ3/Æ3 genotype. CONCLUSIONS: Our findings do not support an association between Apo E polymorphism and MetS in a multicentre population-based study of predominantly White US men and women.
Assuntos
Apolipoproteínas E/genética , Predisposição Genética para Doença , Síndrome Metabólica/genética , Polimorfismo Genético , Idoso , Apolipoproteínas E/metabolismo , Estudos Transversais , Saúde da Família , Feminino , Estudos de Associação Genética , Humanos , Masculino , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Prevalência , Estados Unidos/epidemiologia , População BrancaRESUMO
Evidence is emerging that rates of adverse events in patients taking warfarin may vary with ethnicity. This study investigated the rates of bleeds and thromboembolic events, the international normalised ratio (INR) status and the relationship between INR and bleeding events in Malaysia. Patients attending INR clinic at the Heart Centre, Sarawak General Hospital were enrolled on an ad hoc basis from May 2010 and followed up for 1 year. At each routine visit, INR was recorded and screening for bleeding or thromboembolism occurred. Variables relating to INR control were used as predictors of bleeds in logistic regression models. 125 patients contributed to 140 person-years of follow-up. The rates of major bleed, thromboembolic event and minor bleed per 100 person-years of follow-up were 1.4, 0.75 and 34.3. The median time at target range calculated using the Rosendaal method was 61.6% (IQR 44.674.1%). Of the out-of-range readings, 30.0% were below range and 15.4% were above. INR variability, (standard deviation of individuals' mean INR), was the best predictor of bleeding events, with an odds ratio of 3.21 (95% CI 1.109.38). Low rates of both major bleeds and thromboembolic events were recorded, in addition to a substantial number of INR readings under the recommended target range. This may suggest that the recommended INR ranges may not represent the optimal warfarin intensity for this population and that a lower intensity of therapy, as observed in this cohort, could be beneficial in preventing adverse events.
Assuntos
Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Varfarina/efeitos adversos , Anticoagulantes/administração & dosagem , Feminino , Seguimentos , Hemorragia/sangue , Hemorragia/prevenção & controle , Humanos , Coeficiente Internacional Normatizado , Malásia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Tromboembolia/sangue , Tromboembolia/congênito , Tromboembolia/epidemiologia , Tromboembolia/prevenção & controle , Varfarina/administração & dosagemRESUMO
OBJECTIVES: To develop a robust algorithm to accurately calculate 'daily complete dose counts' for inhaled medicines, used in percent adherence calculations, from electronically-captured nebulizer data within the CFHealthHub Learning Health System. METHODS: A multi-center, cross-sectional study involved participants and clinicians reviewing real-world inhaled medicine usage records and triangulating them with objective nebulizer data to establish a consensus on 'daily complete dose counts.' An algorithm, which used only objective nebulizer data, was then developed using a derivation dataset and evaluated using internal validation dataset. The agreement and accuracy between the algorithm-derived and consensus-derived 'daily complete dose counts' was examined, with the consensus-derived count as the reference standard. RESULTS: Twelve people with CF participated. The algorithm derived a 'daily complete dose count' by screening out 'invalid' doses (those <60s in duration or run in cleaning mode), combining all doses starting within 120s of each other, and then screening out all doses with duration < 480s which were interrupted by power supply failure. The kappa co-efficient was 0.85 (0.71-0.91) in the derivation and 0.86 (0.77-0.94) in the validation dataset. CONCLUSIONS: The algorithm demonstrated strong agreement with the participant-clinician consensus, enhancing confidence in CFHealthHub data. Publishingdata processing methods can encourage trust in digital endpoints and serve as an exemplar for other projects.
Assuntos
Algoritmos , Fibrose Cística , Adesão à Medicação , Nebulizadores e Vaporizadores , Humanos , Fibrose Cística/tratamento farmacológico , Administração por Inalação , Estudos Transversais , Adulto , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Conservative management is an option for prostate cancer (PCa) patients either with the objective of delaying or even avoiding curative therapy, or to wait until palliative treatment is needed. PIONEER, funded by the European Commission Innovative Medicines Initiative, aims at improving PCa care across Europe through the application of big data analytics. OBJECTIVE: To describe the clinical characteristics and long-term outcomes of PCa patients on conservative management by using an international large network of real-world data. DESIGN, SETTING, AND PARTICIPANTS: From an initial cohort of >100 000 000 adult individuals included in eight databases evaluated during a virtual study-a-thon hosted by PIONEER, we identified newly diagnosed PCa cases (n = 527 311). Among those, we selected patients who did not receive curative or palliative treatment within 6 mo from diagnosis (n = 123 146). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Patient and disease characteristics were reported. The number of patients who experienced the main study outcomes was quantified for each stratum and the overall cohort. Kaplan-Meier analyses were used to estimate the distribution of time to event data. RESULTS AND LIMITATIONS: The most common comorbidities were hypertension (35-73%), obesity (9.2-54%), and type 2 diabetes (11-28%). The rate of PCa-related symptomatic progression ranged between 2.6% and 6.2%. Hospitalization (12-25%) and emergency department visits (10-14%) were common events during the 1st year of follow-up. The probability of being free from both palliative and curative treatments decreased during follow-up. Limitations include a lack of information on patients and disease characteristics and on treatment intent. CONCLUSIONS: Our results allow us to better understand the current landscape of patients with PCa managed with conservative treatment. PIONEER offers a unique opportunity to characterize the baseline features and outcomes of PCa patients managed conservatively using real-world data. PATIENT SUMMARY: Up to 25% of men with prostate cancer (PCa) managed conservatively experienced hospitalization and emergency department visits within the 1st year after diagnosis; 6% experienced PCa-related symptoms. The probability of receiving therapies for PCa decreased according to time elapsed after the diagnosis.
Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias da Próstata , Masculino , Adulto , Humanos , Big Data , Neoplasias da Próstata/terapia , Neoplasias da Próstata/diagnóstico , Intervalo Livre de Doença , Europa (Continente)RESUMO
INTRODUCTION: Vaccine safety surveillance commonly includes a serial testing approach with a sensitive method for 'signal generation' and specific method for 'signal validation.' The extent to which serial testing in real-world studies improves or hinders overall performance in terms of sensitivity and specificity remains unknown. METHODS: We assessed the overall performance of serial testing using three administrative claims and one electronic health record database. We compared type I and II errors before and after empirical calibration for historical comparator, self-controlled case series (SCCS), and the serial combination of those designs against six vaccine exposure groups with 93 negative control and 279 imputed positive control outcomes. RESULTS: The historical comparator design mostly had fewer type II errors than SCCS. SCCS had fewer type I errors than the historical comparator. Before empirical calibration, the serial combination increased specificity and decreased sensitivity. Type II errors mostly exceeded 50%. After empirical calibration, type I errors returned to nominal; sensitivity was lowest when the methods were combined. CONCLUSION: While serial combination produced fewer false-positive signals compared with the most specific method, it generated more false-negative signals compared with the most sensitive method. Using a historical comparator design followed by an SCCS analysis yielded decreased sensitivity in evaluating safety signals relative to a one-stage SCCS approach. While the current use of serial testing in vaccine surveillance may provide a practical paradigm for signal identification and triage, single epidemiological designs should be explored as valuable approaches to detecting signals.
Assuntos
Vacinas , Humanos , Vacinas/efeitos adversos , Sensibilidade e Especificidade , Projetos de Pesquisa , Bases de Dados Factuais , Registros Eletrônicos de SaúdeRESUMO
Objective: Developing accurate phenotype definitions is critical in obtaining reliable and reproducible background rates in safety research. This study aims to illustrate the differences in background incidence rates by comparing definitions for a given outcome. Materials and Methods: We used 16 data sources to systematically generate and evaluate outcomes for 13 adverse events and their overall background rates. We examined the effect of different modifications (inpatient setting, standardization of code set, and code set changes) to the computable phenotype on background incidence rates. Results: Rate ratios (RRs) of the incidence rates from each computable phenotype definition varied across outcomes, with inpatient restriction showing the highest variation from 1 to 11.93. Standardization of code set RRs ranges from 1 to 1.64, and code set changes range from 1 to 2.52. Discussion: The modification that has the highest impact is requiring inpatient place of service, leading to at least a 2-fold higher incidence rate in the base definition. Standardization showed almost no change when using source code variations. The strength of the effect in the inpatient restriction is highly dependent on the outcome. Changing definitions from broad to narrow showed the most variability by age/gender/database across phenotypes and less than a 2-fold increase in rate compared to the base definition. Conclusion: Characterization of outcomes across a network of databases yields insights into sensitivity and specificity trade-offs when definitions are altered. Outcomes should be thoroughly evaluated prior to use for background rates for their plausibility for use across a global network.
RESUMO
OBJECTIVE: Observational studies can impact patient care but must be robust and reproducible. Nonreproducibility is primarily caused by unclear reporting of design choices and analytic procedures. This study aimed to: (1) assess how the study logic described in an observational study could be interpreted by independent researchers and (2) quantify the impact of interpretations' variability on patient characteristics. MATERIALS AND METHODS: Nine teams of highly qualified researchers reproduced a cohort from a study by Albogami et al. The teams were provided the clinical codes and access to the tools to create cohort definitions such that the only variable part was their logic choices. We executed teams' cohort definitions against the database and compared the number of subjects, patient overlap, and patient characteristics. RESULTS: On average, the teams' interpretations fully aligned with the master implementation in 4 out of 10 inclusion criteria with at least 4 deviations per team. Cohorts' size varied from one-third of the master cohort size to 10 times the cohort size (2159-63 619 subjects compared to 6196 subjects). Median agreement was 9.4% (interquartile range 15.3-16.2%). The teams' cohorts significantly differed from the master implementation by at least 2 baseline characteristics, and most of the teams differed by at least 5. CONCLUSIONS: Independent research teams attempting to reproduce the study based on its free-text description alone produce different implementations that vary in the population size and composition. Sharing analytical code supported by a common data model and open-source tools allows reproducing a study unambiguously thereby preserving initial design choices.
Assuntos
Pesquisadores , Humanos , Bases de Dados FactuaisRESUMO
Background: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. Methods: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. Findings: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. Interpretation: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. Funding: None.
RESUMO
[This corrects the article DOI: 10.3389/fphar.2022.893484.].
RESUMO
Background: Routinely collected healthcare data such as administrative claims and electronic health records (EHR) can complement clinical trials and spontaneous reports to detect previously unknown risks of vaccines, but uncertainty remains about the behavior of alternative epidemiologic designs to detect and declare a true risk early. Methods: Using three claims and one EHR database, we evaluate several variants of the case-control, comparative cohort, historical comparator, and self-controlled designs against historical vaccinations using real negative control outcomes (outcomes with no evidence to suggest that they could be caused by the vaccines) and simulated positive control outcomes. Results: Most methods show large type 1 error, often identifying false positive signals. The cohort method appears either positively or negatively biased, depending on the choice of comparator index date. Empirical calibration using effect-size estimates for negative control outcomes can bring type 1 error closer to nominal, often at the cost of increasing type 2 error. After calibration, the self-controlled case series (SCCS) design most rapidly detects small true effect sizes, while the historical comparator performs well for strong effects. Conclusion: When applying any method for vaccine safety surveillance we recommend considering the potential for systematic error, especially due to confounding, which for many designs appears to be substantial. Adjusting for age and sex alone is likely not sufficient to address differences between vaccinated and unvaccinated, and for the cohort method the choice of index date is important for the comparability of the groups. Analysis of negative control outcomes allows both quantification of the systematic error and, if desired, subsequent empirical calibration to restore type 1 error to its nominal value. In order to detect weaker signals, one may have to accept a higher type 1 error.
RESUMO
Post-marketing vaccine safety surveillance aims to detect adverse events following immunization in a population. Whether certain methods of surveillance are more precise and unbiased in generating safety signals is unclear. Here, we synthesized information from existing literature to provide an overview of the strengths, weaknesses, and clinical applications of epidemiologic and analytical methods used in vaccine monitoring, focusing on cohort, case-control and self-controlled designs. These designs are proposed to be evaluated in the EUMAEUS (Evaluating Use of Methods for Adverse Event Under Surveillance-for vaccines) study because of their widespread use and potential utility. Over the past decades, there have been an increasing number of epidemiological study designs used for vaccine safety surveillance. While traditional cohort and case-control study designs remain widely used, newer, novel designs such as the self-controlled case series and self-controlled risk intervals have been developed. Each study design comes with its strengths and limitations, and the most appropriate study design will depend on availability of resources, access to records, number and distribution of cases, and availability of population coverage data. Several assumptions have to be made while using the various study designs, and while the goal is to mitigate any biases, violations of these assumptions are often still present to varying degrees. In our review, we discussed some of the potential biases (i.e., selection bias, misclassification bias and confounding bias), and ways to mitigate them. While the types of epidemiological study designs are well established, a comprehensive comparison of the analytical aspects (including method evaluation and performance metrics) of these study designs are relatively less well studied. We summarized the literature, reporting on two simulation studies, which compared the detection time, empirical power, error rate and risk estimate bias across the above-mentioned study designs. While these simulation studies provided insights on the analytic performance of each of the study designs, its applicability to real-world data remains unclear. To bridge that gap, we provided the rationale of the EUMAEUS study, with a brief description of the study design; and how the use of real-world multi-database networks can provide insights into better methods evaluation and vaccine safety surveillance.
RESUMO
Background: Characterization studies of COVID-19 patients with chronic obstructive pulmonary disease (COPD) are limited in size and scope. The aim of the study is to provide a large-scale characterization of COVID-19 patients with COPD. Methods: We included thirteen databases contributing data from January-June 2020 from North America (US), Europe and Asia. We defined two cohorts of patients with COVID-19 namely a 'diagnosed' and 'hospitalized' cohort. We followed patients from COVID-19 index date to 30 days or death. We performed descriptive analysis and reported the frequency of characteristics and outcomes among COPD patients with COVID-19. Results: The study included 934,778 patients in the diagnosed COVID-19 cohort and 177,201 in the hospitalized COVID-19 cohort. Observed COPD prevalence in the diagnosed cohort ranged from 3.8% (95%CI 3.5-4.1%) in French data to 22.7% (95%CI 22.4-23.0) in US data, and from 1.9% (95%CI 1.6-2.2) in South Korean to 44.0% (95%CI 43.1-45.0) in US data, in the hospitalized cohorts. COPD patients in the hospitalized cohort had greater comorbidity than those in the diagnosed cohort, including hypertension, heart disease, diabetes and obesity. Mortality was higher in COPD patients in the hospitalized cohort and ranged from 7.6% (95%CI 6.9-8.4) to 32.2% (95%CI 28.0-36.7) across databases. ARDS, acute renal failure, cardiac arrhythmia and sepsis were the most common outcomes among hospitalized COPD patients. Conclusion: COPD patients with COVID-19 have high levels of COVID-19-associated comorbidities and poor COVID-19 outcomes. Further research is required to identify patients with COPD at high risk of worse outcomes.
RESUMO
Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD. Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services. Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms, medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized cohorts than diagnosed. Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine surveillance.
RESUMO
Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error.
RESUMO
BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.
Assuntos
COVID-19/mortalidade , Neoplasias/epidemiologia , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Comorbidade , Bases de Dados Factuais , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Terapia de Imunossupressão/efeitos adversos , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Pandemias , Prevalência , Fatores de Risco , SARS-CoV-2 , Espanha/epidemiologia , Estados Unidos/epidemiologia , Adulto JovemRESUMO
OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Adolescente , Distribuição por Idade , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Comorbidade , Bases de Dados Factuais , Diagnóstico Diferencial , Feminino , França/epidemiologia , Alemanha/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Influenza Humana/complicações , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Masculino , República da Coreia/epidemiologia , Espanha/epidemiologia , Avaliação de Sintomas , Fatores de Tempo , Resultado do Tratamento , Estados Unidos/epidemiologiaRESUMO
OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.