Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 636-647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38320974

RESUMO

Soil phosphorus (P) is a growth-limiting nutrient in tropical ecosystems, driving diverse P-acquisition strategies among plants. Particularly, mining for inorganic P through phosphomonoesterase (PME) activity is essential, given the substantial proportion of organic P in soils. Yet, the relationship between PME activity and other nutrient-acquisition root traits remains unclear. We measured root PME activity and commonly measured root traits, including root diameter, specific root length (SRL), root tissue density (RTD), and nitrogen concentration ([N]) in 18 co-occurring species across soils with varying P availability to better understand trees response to P supply. Root [N] and RTD were inversely related, and that axis was not clearly related to soil P supply. Both traits, however, correlated positively and negatively with PME activity, which responded strongly to P supply. Conversely, root diameter was inversely related to SRL, but this axis was not related to P supply. This pattern suggests that limiting similarity influenced variation along the diameter-SRL axis, explaining local trait diversity. Meanwhile, variation along the root [N]-RTD axis might best reflect environmental filtering. Overall, P availability indicator traits such as PME activity and root hairs only tended to be associated with these axes, highlighting limitations of these axes in describing convergent adaptations at local sites.


Assuntos
Florestas , Monoéster Fosfórico Hidrolases , Fósforo , Raízes de Plantas , Solo , Clima Tropical , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Solo/química , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Característica Quantitativa Herdável
2.
Am J Bot ; 111(4): e16314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641918

RESUMO

PREMISE: Spectroscopy is a powerful remote sensing tool for monitoring plant biodiversity over broad geographic areas. Increasing evidence suggests that foliar spectral reflectance can be used to identify trees at the species level. However, most studies have focused on only a limited number of species at a time, and few studies have explored the underlying phylogenetic structure of leaf spectra. Accurate species identifications are important for reliable estimations of biodiversity from spectral data. METHODS: Using over 3500 leaf-level spectral measurements, we evaluated whether foliar reflectance spectra (400-2400 nm) can accurately differentiate most tree species from a regional species pool in eastern North America. We explored relationships between spectral, phylogenetic, and leaf functional trait variation as well as their influence on species classification using a hurdle regression model. RESULTS: Spectral reflectance accurately differentiated tree species (κ = 0.736, ±0.005). Foliar spectra showed strong phylogenetic signal, and classification errors from foliar spectra, although present at higher taxonomic levels, were found predominantly between closely related species, often of the same genus. In addition, we find functional and phylogenetic distance broadly control the occurrence and frequency of spectral classification mistakes among species. CONCLUSIONS: Our results further support the link between leaf spectral diversity, taxonomic hierarchy, and phylogenetic and functional diversity, and highlight the potential of spectroscopy to remotely sense plant biodiversity and vegetation response to global change.


Assuntos
Filogenia , Folhas de Planta , Árvores , Biodiversidade , Especificidade da Espécie , Análise Espectral , Tecnologia de Sensoriamento Remoto
3.
New Phytol ; 238(2): 549-566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746189

RESUMO

Plant ecologists use functional traits to describe how plants respond to and influence their environment. Reflectance spectroscopy can provide rapid, non-destructive estimates of leaf traits, but it remains unclear whether general trait-spectra models can yield accurate estimates across functional groups and ecosystems. We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples from 103 species. These samples span a large share of known trait variation and represent several functional groups and ecosystems, mainly in eastern Canada. We used partial least-squares regression (PLSR) to build empirical models for estimating traits from spectra. Within the dataset, our PLSR models predicted traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) with high accuracy (R2 > 0.85; %RMSE < 10). Models for most chemical traits, including pigments, carbon fractions, and major nutrients, showed intermediate accuracy (R2  = 0.55-0.85; %RMSE = 12.7-19.1). Micronutrients such as Cu and Fe showed the poorest accuracy. In validation on external datasets, models for traits such as LMA and LDMC performed relatively well, while carbon fractions showed steep declines in accuracy. We provide models that produce fast, reliable estimates of several functional traits from leaf spectra. Our results reinforce the potential uses of spectroscopy in monitoring plant function around the world.


Assuntos
Ecossistema , Plantas , Análise Espectral/métodos , Folhas de Planta/química , Carbono/análise
4.
New Phytol ; 238(6): 2651-2667, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960543

RESUMO

Leaf spectra are integrated foliar phenotypes that capture a range of traits and can provide insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect belowground processes such as mycorrhizal associations. However, evidence for the relationship between leaf traits and mycorrhizal association is mixed, and few studies account for shared evolutionary history. We conduct partial least squares discriminant analysis to assess the ability of spectra to predict mycorrhizal type. We model the evolution of leaf spectra for 92 vascular plant species and use phylogenetic comparative methods to assess differences in spectral properties between arbuscular mycorrhizal and ectomycorrhizal plant species. Partial least squares discriminant analysis classified spectra by mycorrhizal type with 90% (arbuscular) and 85% (ectomycorrhizal) accuracy. Univariate models of principal components identified multiple spectral optima corresponding with mycorrhizal type due to the close relationship between mycorrhizal type and phylogeny. Importantly, we found that spectra of arbuscular mycorrhizal and ectomycorrhizal species do not statistically differ from each other after accounting for phylogeny. While mycorrhizal type can be predicted from spectra, enabling the use of spectra to identify belowground traits using remote sensing, this is due to evolutionary history and not because of fundamental differences in leaf spectra due to mycorrhizal type.


Assuntos
Micorrizas , Traqueófitas , Filogenia , Nitrogênio , Plantas
5.
Ecol Lett ; 24(5): 984-995, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33709494

RESUMO

The resource availability hypothesis predicts that plants adapted to infertile soils have high levels of anti-herbivore leaf defences. This hypothesis has been mostly explored for secondary metabolites such as phenolics, whereas it remains underexplored for silica-based defences. We determined leaf concentrations of total phenols and silicon (Si) in plants growing along the 2-million-year Jurien Bay chronosequence, exhibiting an extreme gradient of soil fertility. We found that nitrogen (N) limitation on young soils led to a greater expression of phenol-based defences, whereas old, phosphorus (P)-impoverished soils favoured silica-based defences. Both defence types were negatively correlated at the community and individual species level. Our results suggest a trade-off among these two leaf defence strategies based on the strength and type of nutrient limitation, thereby opening up new perspectives for the resource availability hypothesis and plant defence research. This study also highlights the importance of silica-based defences under low P supply.


Assuntos
Ecossistema , Solo , Fenol , Fenóis , Folhas de Planta , Dióxido de Silício
6.
Microb Ecol ; 82(2): 377-390, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32556393

RESUMO

In temperate and boreal forests, competition for soil resources between free-living saprotrophs and ectomycorrhizal (EcM) fungi has been suggested to restrict saprotrophic fungal dominance to the most superficial organic soil horizons in forests dominated by EcM trees. By contrast, lower niche overlap with arbuscular mycorrhizal (AM) fungi could allow fungal saprotrophs to maintain this dominance into deeper soil horizons in AM-dominated forests. Here we used a natural gradient of adjacent forest patches that were dominated by either AM or EcM trees, or a mixture of both to determine how fungal communities characterized with high-throughput amplicon sequencing change across organic and mineral soil horizons. We found a general shift from saprotrophic to mycorrhizal fungal dominance with increasing soil depth in all forest mycorrhizal types, especially in organic horizons. Vertical changes in soil chemistry, including pH, organic matter, exchangeable cations, and extractable phosphorus, coincided with shifts in fungal community composition. Although fungal communities and soil chemistry differed among adjacent forest mycorrhizal types, variations were stronger within a given soil profile, pointing to the importance of considering horizons when characterizing soil fungal communities. Our results also suggest that in temperate forests, vertical shifts from saprotrophic to mycorrhizal fungi within organic and mineral horizons occur similarly in both ectomycorrhizal and arbuscular mycorrhizal forests.


Assuntos
Micorrizas , Florestas , Fungos/genética , Micorrizas/genética , Solo , Microbiologia do Solo , Árvores
7.
Ecol Lett ; 23(2): 370-380, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773839

RESUMO

Plant spectral diversity - how plants differentially interact with solar radiation - is an integrator of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose to measure spectral diversity as spectral variance, which allows the partitioning of the spectral diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within communities) and beta (ß; among communities) components. Our method calculates the contributions of individual bands or spectral features to spectral γ-, ß-, and α-diversity, as well as the contributions of individual plant communities to spectral diversity. We present two case studies illustrating how our approach can identify 'hotspots' of spectral α-diversity within a region, and discover spectrally unique areas that contribute strongly to ß-diversity. Partitioning spectral diversity and mapping its spatial components has many applications for conservation since high local diversity and distinctiveness in composition are two key criteria used to determine the ecological value of ecosystems.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Plantas
8.
Microb Ecol ; 76(4): 1009-1020, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29663039

RESUMO

Long-term soil age gradients are useful model systems to study how changes in nutrient limitation shape communities of plant root mutualists because they represent strong natural gradients of nutrient availability, particularly of nitrogen (N) and phosphorus (P). Here, we investigated changes in the dinitrogen (N2)-fixing bacterial community composition and diversity in nodules of a single host legume (Acacia rostellifera) across the Jurien Bay chronosequence, a retrogressive 2 million-year-old sequence of coastal dunes representing an exceptionally strong natural soil fertility gradient. We collected nodules from plants grown in soils from five chronosequence stages ranging from very young (10s of years; associated with strong N limitation for plant growth) to very old (> 2,000,000 years; associated with strong P limitation), and sequenced the nifH gene in root nodules to determine the composition and diversity of N2-fixing bacterial symbionts. A total of 335 unique nifH gene operational taxonomic units (OTUs) were identified. Community composition of N2-fixing bacteria within nodules, but not diversity, changed with increasing soil age. These changes were attributed to pedogenesis-driven shifts in edaphic conditions, specifically pH, exchangeable manganese, resin-extractable phosphate, nitrate and nitrification rate. A large number of common N2-fixing bacteria genera (e.g. Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) belonging to the Rhizobiaceae family (α-proteobacteria) comprised 70% of all raw sequences and were present in all nodules. However, the oldest soils, which show some of the lowest soil P availability ever recorded, harboured the largest proportion of unclassified OTUs, suggesting a unique set of N2-fixing bacteria adapted to extreme P limitation. Our results show that N2-fixing bacterial composition varies strongly during long-term ecosystem development, even within the same host, and therefore rhizobia show strong edaphic preferences.


Assuntos
Acacia/microbiologia , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Solo/química , Acacia/metabolismo , Meio Ambiente , Microbiota , Oxirredutases/análise , Proteínas de Plantas/análise , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Austrália Ocidental
9.
Physiol Plant ; 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29418005

RESUMO

During long-term ecosystem development and its associated decline in soil phosphorus (P) availability, the abundance of mycorrhizal plant species declines at the expense of non-mycorrhizal species with root specialisations for P-acquisition, such as massive exudation of carboxylates. Leaf manganese (Mn) concentration has been suggested as a proxy for such a strategy, Mn concentration being higher in non-mycorrhizal plants that release carboxylates than in mycorrhizal plants. Shifts in nitrogen (N)-acquisition strategies also occur; nodulation in legumes is expected at low N availability, when sufficient P is available. We investigated whether two congeneric legume species (Bossiaea linophylla and Bossiaea eriocarpa) occurring along two long-term chronosequences on the south-western Australian coast and grown in a glasshouse at varying N and P supply exhibited plasticity in nutrient-acquisition strategies. We hypothesised that the shifts in nutrient limitation and nutrient-acquisition strategies at the community level would also be found at the species level. Leaf N: P ratios and the responses to nutrient availability suggested that growth of both species exhibited P-limitation in all treatments, due to the very high leaf [N] of legumes afforded by symbiotic N-fixation. Mycorrhizal colonisation was not greater at higher P supply, and root exudation of carboxylates was not stimulated at low P supply; both were unrelated to leaf [Mn]. However, nodule production declined with increasing N supply. We conclude that intraspecific variation in nutrient-acquisition and use is low in these species, and that the variation at the community level, observed in previous studies, is likely driven by high-species turnover.

10.
Ecol Lett ; 20(10): 1273-1284, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28853198

RESUMO

Changes in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump-shaped responses to soil ageing, which were propagated to higher-order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate-aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.


Assuntos
Mudança Climática , Cadeia Alimentar , Clima , Solo
11.
New Phytol ; 213(4): 1597-1603, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27735077

RESUMO

Contents 1597 I. 1597 II. 1597 III. 1598 IV. 1598 V. 1600 VI. 1601 VII. 1601 VIII. 1601 1602 References 1602 SUMMARY: Trait-based approaches have led to significant advances in plant ecology, but are currently biased toward above-ground traits. It is becoming clear that a stronger emphasis on below-ground traits is needed to better predict future changes in plant biodiversity and their consequences for ecosystem functioning. Here I propose six 'below-ground frontiers' in trait-based plant ecology, with an emphasis on traits governing soil nutrient acquisition: redefining fine roots; quantifying root trait dimensionality; integrating mycorrhizas; broadening the suite of root traits; determining linkages between root traits and abiotic and biotic factors; and understanding ecosystem-level consequences of root traits. Focusing research efforts along these frontiers should help to fulfil the promise of trait-based ecology: enhanced predictive capacity across ecological scales.


Assuntos
Ecossistema , Característica Quantitativa Herdável , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
12.
Mol Ecol ; 25(19): 4919-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480679

RESUMO

Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis.


Assuntos
Micorrizas/classificação , Microbiologia do Solo , Solo/química , Austrália , Ecossistema , Fósforo/química
13.
Oecologia ; 180(4): 923-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26796410

RESUMO

The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.


Assuntos
Ecologia , Plantas , Meio Ambiente , Fenótipo , Especificidade da Espécie
14.
New Phytol ; 206(2): 507-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25494682

RESUMO

Hyperdiverse forests occur in the lowland tropics, whereas the most species-rich shrublands are found in regions such as south-western Australia (kwongan) and South Africa (fynbos). Despite large differences, these ecosystems share an important characteristic: their soils are strongly weathered and phosphorus (P) is a key growth-limiting nutrient. Soil-borne pathogens are increasingly being recognized as drivers of plant diversity in lowland tropical rainforests, but have received little attention in species-rich shrublands. We suggest a trade-off in which the species most proficient at acquiring P have ephemeral roots that are particularly susceptible to soil-borne pathogens. This could equalize out the differences in competitive ability among co-occurring species in these ecosystems, thus contributing to coexistence. Moreover, effective protection against soil-borne pathogens by ectomycorrhizal (ECM) fungi might explain the occurrence of monodominant stands of ECM trees and shrubs amongst otherwise species-rich communities. We identify gaps in our knowledge which need to be filled in order to evaluate a possible link between P limitation, fine root traits, soil-borne pathogens and local plant species diversity. Such a link may help to explain how numerous plant species can coexist in hyperdiverse rainforests and shrublands, and, conversely, how monodominant stands can develop in these ecosystems.


Assuntos
Micorrizas/fisiologia , Fósforo/deficiência , Plantas/metabolismo , Microbiologia do Solo , Biodiversidade , Ecossistema , Florestas , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/microbiologia , África do Sul , Austrália do Sul , Árvores , Austrália Ocidental
15.
Mol Ecol ; 24(19): 4912-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332084

RESUMO

Ecosystem retrogression following long-term pedogenesis is attributed to phosphorus (P) limitation of primary productivity. Arbuscular mycorrhizal fungi (AMF) enhance P acquisition for most terrestrial plants, but it has been suggested that this strategy becomes less effective in strongly weathered soils with extremely low P availability. Using next generation sequencing of the large subunit ribosomal RNA gene in roots and soil, we compared the composition and diversity of AMF communities in three contrasting stages of a retrogressive >2-million-year dune chronosequence in a global biodiversity hotspot. This chronosequence shows a ~60-fold decline in total soil P concentration, with the oldest stage representing some of the most severely P-impoverished soils found in any terrestrial ecosystem. The richness of AMF operational taxonomic units was low on young (1000's of years), moderately P-rich soils, greatest on relatively old (~120 000 years) low-P soils, and low again on the oldest (>2 000 000 years) soils that were lowest in P availability. A similar decline in AMF phylogenetic diversity on the oldest soils occurred, despite invariant host plant diversity and only small declines in host cover along the chronosequence. Differences in AMF community composition were greatest between the youngest and the two oldest soils, and this was best explained by differences in soil P concentrations. Our results point to a threshold in soil P availability during ecosystem regression below which AMF diversity declines, suggesting environmental filtering of AMF insufficiently adapted to extremely low P availability.


Assuntos
Biodiversidade , Ecossistema , Micorrizas/classificação , Microbiologia do Solo , Austrália , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Micorrizas/genética , Fósforo/química , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Solo/química
16.
Plant Cell Environ ; 37(6): 1276-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24895754

RESUMO

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus ('delayed greening'), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.


Assuntos
Fósforo/metabolismo , Proteaceae/fisiologia , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clorofila/metabolismo , Glucose-6-Fosfato/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteaceae/genética , Proteaceae/metabolismo , Proteínas Ribossômicas/metabolismo , Amido/metabolismo
17.
Oecologia ; 171(2): 439-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22833204

RESUMO

The dynamic equilibrium model of species diversity predicts that ecosystem productivity interacts with disturbance to determine how many species coexist. However, a robust test of this model requires manipulations of productivity and disturbance over a sufficient timescale to allow competitive exclusion, and such long-term experimental tests of this hypothesis are rare. Here we use long-term (27 years), large-scale (8 × 50-m plots), factorial manipulations of soil resource availability and sheep grazing intensity (disturbance) in grasslands to test the dynamic equilibrium model. As predicted by the model, increased productivity not only reduced plant species richness, but also moderated the effects of grazing intensity, shifting them from negative to neutral with increasing productivity. Reductions in species richness with productivity were associated with dominance by faster growing (i.e. high specific leaf area) and taller plants. Conversely, grazing favoured shorter plants and this effect became stronger with greater productivity, consistent with the view that grazing can lead to weaker asymmetric competition for light. Our study shows that the dynamic equilibrium model can help to explain changes in plant species richness following long-term increases in soil resource availability and grazing pressure, two fundamental drivers of change in grasslands worldwide.


Assuntos
Biodiversidade , Ecossistema , Modelos Teóricos , Plantas , Animais , Comportamento Alimentar , Herbivoria , Ovinos , Solo
18.
Sci Rep ; 13(1): 17179, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821515

RESUMO

The advent of new spaceborne imaging spectrometers offers new opportunities for ecologists to map vegetation traits at global scales. However, to date most imaging spectroscopy studies exploiting satellite spectrometers have been constrained to the landscape scale. In this paper we present a new method to map vegetation traits at the landscape scale and upscale trait maps to the continental level, using historical spaceborne imaging spectroscopy (Hyperion) to derive estimates of leaf mass per area, nitrogen, and carbon concentrations of forests in Québec, Canada. We compare estimates for each species with reference field values and obtain good agreement both at the landscape and continental scales, with patterns consistent with the leaf economic spectrum. By exploiting the Hyperion satellite archive to map these traits and successfully upscale the estimates to the continental scale, we demonstrate the great potential of recent and upcoming spaceborne spectrometers to benefit plant biodiversity monitoring and conservation efforts.


Assuntos
Florestas , Árvores , Quebeque , Análise Espectral/métodos , Diagnóstico por Imagem , Folhas de Planta/química , Ecossistema
19.
New Phytol ; 196(4): 1098-1108, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22937909

RESUMO

Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. For six Proteaceae species, we measured soil and leaf P concentrations and rates of photosynthesis of both young expanding and mature leaves. We also assessed the investment in galactolipids, sulfolipids and phospholipids in young and mature leaves, and compared these results with those on Arabidopsis thaliana, grown under both P-sufficient and P-deficient conditions. In all Proteaceae species, phospholipid levels strongly decreased during leaf development, whereas those of galactolipids and sulfolipids strongly increased. Photosynthetic rates increased from young to mature leaves. This shows that these species extensively replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. A considerably less pronounced shift was observed in A. thaliana. Our results clearly show that a low investment in phospholipids, relative to nonphospholipids, offers a partial explanation for a high photosynthetic rate per unit leaf P in Proteaceae adapted to P-impoverished soils.


Assuntos
Galactolipídeos/metabolismo , Lipídeos , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteaceae/metabolismo , Solo , Arabidopsis/crescimento & desenvolvimento , Lipídeos/análise , Lipídeos/química , Fósforo/análise , Fósforo/deficiência , Fotossíntese , Folhas de Planta/metabolismo , Solo/análise , Austrália do Sul , Austrália Ocidental
20.
Ecology ; 93(1): 145-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22486095

RESUMO

There is much concern that the functioning of ecosystems will be affected by human-induced changes in biodiversity, of which land-use change is the most important driver. However, changes in biodiversity may be only one of many pathways through which land use alters ecosystem functioning, and its importance relative to other pathways remains unclear. In particular, although biodiversity-ecosystem function research has focused primarily on grasslands, the increases in agricultural inputs (e.g., fertilization, irrigation) and grazing pressure that drive change in grasslands worldwide have been largely ignored. Here we show that long-term (27-year) manipulations of soil resource availability and sheep grazing intensity caused marked, consistent shifts in grassland plant functional composition and diversity, with cascading (i.e., causal chains of) direct, indirect, and interactive effects on multiple ecosystem functions. Resource availability exerted dominant control over above-ground net primary production (ANPP), both directly and indirectly via shifts in plant functional composition. Importantly, the effects of plant functional diversity and grazing intensity on ANPP shifted from negative to positive as agricultural inputs increased, providing strong evidence that soil resource availability modulates the impacts of plant diversity and herbivory on primary production. These changes in turn altered litter decomposition and, ultimately, soil carbon sequestration, highlighting the relevance of ANPP as a key integrator of ecosystem functioning. Our study reveals how human alterations of bottom-up (resources) and top-down (herbivory) forces together interact to control the functioning of grazing systems, the most extensive land use on Earth.


Assuntos
Ecossistema , Monitoramento Ambiental , Atividades Humanas , Poaceae/fisiologia , Solo , Agricultura , Animais , Nova Zelândia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA