Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Ann Bot ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37076271

RESUMO

BACKGROUND AND AIMS: The prevailing view from the areocladogenesis of molecular phylogenies is that the iconic South African Cape Proteaceae (subfamily Proteoideae) arrived from Australia across the Indian Ocean in the Upper Cretaceous (100‒65 million years ago, Ma). Since fossil pollen indicates that the family probably arose in North-West Africa during the early Cretaceous, an alternative view is that it migrated to the Cape from North-Central Africa. The plan therefore was to collate fossil pollen records throughout Africa to determine if they are consistent with an African (para-autochthonous) origin for the Cape Proteaceae, and to seek further support from other paleo-disciplines. METHODS: Palynology (identity, date and location of records), molecular phylogeny and chronogram preparation, biogeography of plate tectonics, and paleo-atmospheric and ocean circulation models. KEY RESULTS: Our collation of the rich assemblage of Proteaceae palynomorphs stretching back to 107 Ma (Triorites africaensis) in North-West Africa showed its progressive overland migration to the Cape by 75‒65 Ma. No key palynomorphs recorded in Australia-Antarctica have morphological affinities with African fossils but specific clade assignment of the preMiocene records is not currently possible. The Cape Proteaceae encompass three molecular-based clades (tribes) whose most-recent apparent ancestors are sisters to those in Australia. However, our chronogram shows that the major Adenanthos/Leucadendron-related clade, originating 54‒34 Ma, would have 'arrived' too late as species with Proteaceae affinities were already present ~20 My earlier. The Franklandia/Protea-related clade arose 118‒81 Ma so its distinctive pollen should have been the foundation for the scores of palynomorphs recorded at 100‒80 Ma but it was not. Also, the prevailing winds and ocean currents trended away from South Africa rather than towards, as the 'out-of-Australia' hypothesis requires. Based on the evidence assembled here, we list three points favouring an Australian origin and nine against; four points favouring an Antarctic origin and seven against; and nine points favouring a North-Central African origin and three against. CONCLUSIONS: We conclude that a gradual migration of the Proteaceae from North-Central Africa southeast→south→southwest to the Cape and surrounds occurred via adaptation and speciation during the period 90‒70 Ma. We caution that incorrect conclusions may be drawn from literal interpretations of molecular phylogenies that neglect the fossil record and do not recognize the possible confounding effects of selection under matched environments leading to parallel evolution and extinction of bona fide sister clades.

2.
Ann Bot ; 131(4): 555-568, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36794962

RESUMO

BACKGROUND: Relative growth rate (RGR) has a long history of use in biology. In its logged form, RGR = ln[(M + ΔM)/M], where M is size of the organism at the commencement of the study, and ΔM is new growth over time interval Δt. It illustrates the general problem of comparing non-independent (confounded) variables, e.g. (X + Y) vs. X. Thus, RGR depends on what starting M(X) is used even within the same growth phase. Equally, RGR lacks independence from its derived components, net assimilation rate (NAR) and leaf mass ratio (LMR), as RGR = NAR × LMR, so that they cannot legitimately be compared by standard regression or correlation analysis. FINDINGS: The mathematical properties of RGR exemplify the general problem of 'spurious' correlations that compare expressions derived from various combinations of the same component terms X and Y. This is particularly acute when X >> Y, the variance of X or Y is large, or there is little range overlap of X and Y values among datasets being compared. Relationships (direction, curvilinearity) between such confounded variables are essentially predetermined and so should not be reported as if they are a finding of the study. Standardizing by M rather than time does not solve the problem. We propose the inherent growth rate (IGR), lnΔM/lnM, as a simple, robust alternative to RGR that is independent of M within the same growth phase. CONCLUSIONS: Although the preferred alternative is to avoid the practice altogether, we discuss cases where comparing expressions with components in common may still have utility. These may provide insights if (1) the regression slope between pairs yields a new variable of biological interest, (2) the statistical significance of the relationship remains supported using suitable methods, such as our specially devised randomization test, or (3) multiple datasets are compared and found to be statistically different. Distinguishing true biological relationships from spurious ones, which arise from comparing non-independent expressions, is essential when dealing with derived variables associated with plant growth analyses.


Assuntos
Desenvolvimento Vegetal , Folhas de Planta
3.
Ann Bot ; 127(3): 381-395, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33038222

RESUMO

BACKGROUND AND AIMS: Fine-scale spatial patterns of the seedlings of co-occurring species reveal the relative success of reproduction and dispersal and may help interpret coexistence patterns of adult plants. To understand whether postfire community dynamics are controlled by mathematical, biological or environmental factors, we documented seedling-adult (putative parent) distances for a range of co-occurring species. We hypothesized that nearest-seedling-to-adult distances should be a function of the distance between the closest conspecific seedlings, closest inter-adult distances and seedling-to-parent ratios, and also that these should scale up in a consistent way from all individuals, to within and between species and finally between functional types (FTs). METHODS: We assessed seedling-adult, seedling-seedling and adult-adult distances for 19 co-occurring shrub species 10 months after fire in a species-rich shrubland in south-western Australia. Species were categorized into 2 × 2 FTs: those that are killed by fire [non-(re)sprouters] vs. those that survive (resprouters) in nine taxonomically matched pairs, and those that disperse their seeds prefire (geosporous) vs. those that disperse their seeds postfire (serotinous). KEY RESULTS: For the total data set and means for all species, seedling-adult distance was essentially a mathematical phenomenon, and correlated positively with seedling-seedling distance and adult-adult distance, and inversely with seedlings per adult. Among the four FTs, seedling-adult distance was shortest for geosporous non-sprouters and widest for serotinous resprouters. Why adults that produce few seedlings (resprouters) should be further away from them defies a simple mathematical or biological explanation at present. Ecologically, however, it is adaptive: the closest seedling was usually under the (now incinerated) parent crown of non-sprouters whereas those of resprouters were on average four times further away. CONCLUSIONS: Our study highlights the value of recognizing four reproductive syndromes within fire-prone vegetation, and shows how these are characterized by marked differences in their seedling-adult spatial relations that serve to enhance biodiversity of the community.


Assuntos
Incêndios , Plântula , Plantas , Sementes , Austrália do Sul , Austrália Ocidental
4.
Oecologia ; 196(2): 589-604, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34159425

RESUMO

A mechanistic understanding of fire-driven seedling recruitment is essential for effective conservation management of fire-prone vegetation, such as South African fynbos, especially with rare and threatened taxa. The genus Leucadendron (Proteaceae) is an ideal candidate for comparative germination studies, comprising 85 species with a mixture of contrasting life-history traits (killed by fire vs able to resprout; serotinous vs geosporous) and seed morphologies (nutlets vs winged achenes). Individual and combined effects of heat and smoke on seed germination of 40 species were quantified in the laboratory, and Bayesian inference applied to distinguish biologically meaningful treatment effects from non-zero, but biologically trivial, effects. Three germination syndromes were identified based on whether germination was dependent on, enhanced by, or independent of direct fire cues (heat and smoke). Seed storage location was the most reliable predictor of germination syndromes, with soil-stored seeds c. 80% more likely to respond to direct fire cues (primarily smoke) than canopy-stored seeds. Notable exceptions were L. linifolium, with an absolute requirement for smoke to germinate (the third serotinous species so reported), and two other serotinous species with smoke-enhanced germination. Nutlet-bearing species, whether serotinous or geosporous, were c. 70% more likely to respond to fire cues than winged seeds, but there was no evidence for an effect of phylogeny or persistence strategy on germination. This comprehensive account of seed germination characteristics and identification of germination syndromes and their predictors, supports propagation, conservation and restoration initiatives in this iconic fynbos genus and other fire-prone shrubs with canopy or soil-stored seeds.


Assuntos
Incêndios , Proteaceae , Teorema de Bayes , Germinação , Sementes , Síndrome
6.
J Integr Plant Biol ; 61(4): 417-432, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29993190

RESUMO

Trait divergence between populations is considered an adaptive response to different environments, but to what extent this response is accompanied by genetic differentiation is less clear since it may be phenotypic plasticity. In this study, we analyzed phenotypic variation between two Banksia attenuata growth forms, lignotuberous (shrub) and epicormic resprouting (tree), in fire-prone environments to identify the environmental factors that have driven this phenotypic divergence. We linked genotype with phenotype and traced candidate genes using differential gene expression analysis. Fire intervals determined the phenotypic divergence between growth forms in B. attenuata. A genome-wide association study identified 69 single nucleotide polymorphisms, putatively associated with growth form, whereas no growth form- or phenotype-specific genotypes were identified. Genomic differentiation between the two growth forms was low (Fst = 0.024). Differential gene expression analysis identified 37 genes/transcripts that were differentially expressed in the two growth forms. A small heat-shock protein gene, associated with lignotuber presence, was differentially expressed in the two forms. We conclude that different fire regimes induce phenotypic polymorphism in B. attenuata, whereas phenotypic trait divergence involves the differential expression of a small fraction of genes that interact strongly with the disturbance regime. Thus, phenotypic plasticity among resprouters is the general strategy for surviving varying fire regimes.


Assuntos
Adaptação Fisiológica/genética , Ecótipo , Meio Ambiente , Incêndios , Genoma de Planta , Proteaceae/genética , Característica Quantitativa Herdável , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genótipo , Modelos Biológicos , Polimorfismo de Nucleotídeo Único/genética , Proteaceae/anatomia & histologia , Proteaceae/crescimento & desenvolvimento , Proteaceae/fisiologia , Plântula/genética , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento
7.
New Phytol ; 217(4): 1435-1448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29334401

RESUMO

Despite long-time awareness of the importance of the location of buds in plant biology, research on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy swellings and belowground caudexes. These support many morphologically distinct organs. Given their history and function, these organs may be divided into three groups: those that originated in the early history of plants and that currently are widespread (bud-bearing roots and root crowns); those that also originated early and have spread mainly among ferns and monocots (nonwoody rhizomes and a wide range of fleshy underground swellings); and those that originated later in history and are strictly tied to fire-prone ecosystems (woody rhizomes, lignotubers and xylopodia). Recognizing the diversity of belowground bud banks is the starting point for understanding the many evolutionary pathways available for responding to severe recurrent disturbances.


Assuntos
Ecossistema , Incêndios , Plantas/anatomia & histologia , Evolução Biológica
9.
Ann Bot ; 118(4): 725-732, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288511

RESUMO

Background Root clusters are bunches of hairy rootlets produced by >1800 species in nine families. The possible involvement of micro-organisms in root-cluster formation has produced conflicting results over the last 40 years. In addition, any effect of rhizobacteria on overall plant growth of root-cluster-bearing species remains unknown. Aims To evaluate the effect of seven rhizobacteria on total plant size, and relative cluster production, by three species, and relate outcomes to their indole-3-acetic acid (IAA)-producing ability as part explanation of past disparate results. Methods We grew Leucadendron salicifolium (from South Africa), Viminaria juncea (Australia) and Lupinus albus (Europe) in gnotobiotic, hydroponic culture at two nitrogen (N) levels and inoculated them with seven bacterial strains and harvested the plants after 13 weeks. Key Results Following inoculation with all seven bacteria individually, plant growth sometimes greatly exceeded that of the aseptic controls, but, under other conditions, growth was less than the controls. Leucadendron and Lupinus failed to produce root clusters in the -N aseptic controls and Viminaria in the +N controls that was overcome by inoculating them with selected bacteria. Six bacteria were able to induce far more root clusters than those of the aseptic controls, while all bacteria sometimes suppressed cluster production in other treatments. All nine possible combinations of resource (plant size, indirect) and morphogenetic (relative cluster production, direct) effects were represented among the results, especially positive synergism (larger plants with a greater density of clusters). There was no clear relationship with IAA-producing ability of the seven bacteria, but low IAA strains of Pseudomonas putida and Bacillus magetarium were associated with greatest cluster production. Conclusions While root-cluster formation can sometimes be induced by introducing rhizobacteria to aseptic culture, the growth-promoting properties of apparently beneficial bacteria on general growth and root-cluster production are best described as facultative, as their promotory effects depend on host species, growing conditions and index of plant response used.

10.
New Phytol ; 206(3): 1156-1162, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25534068

RESUMO

Root clusters are bunches of hairy rootlets that enhance nutrient uptake among many plants. Since first being reported in 1974, the involvement of rhizobacteria in their formation has received conflicting support. Attempts to identify specific causative organisms have failed and their role has remained speculative. We set up a gnotobiotic experiment using two root-clustered species, Viminaria juncea (Fabaceae) and Hakea laurina (Proteaceae), and inoculated them with two plant-growth-promoting rhizobacteria (PGPR), Bradyrhizobium elkanii and Bacillus mageratium, that produce indole-3-acetic-acid (IAA). Plants were suspended in water culture with four combinations of nitrogen and phosphorus. Clusters only developed in the presence of PGPR in two treatments, were greatly enhanced in another four, suppressed in five, and unaffected in five. Nitrogen amendment was associated with a higher density of clusters. Bradyrhizobium promoted cluster formation in Hakea, whereas Bacillus promoted cluster formation in Viminaria and suppressed it in Hakea. Greater root cluster numbers were due either to a larger root system induced by PGPR (indirect resource effect) and/or to more clusters per unit length of parent root (direct morphogenetic effect). The results are interpreted in terms of greater IAA production by Bradyrhizobium than Bacillus and greater sensitivity of Viminaria to IAA than Hakea.


Assuntos
Bacillus/fisiologia , Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Proteaceae/microbiologia , Microbiologia do Solo , Fabaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Proteaceae/crescimento & desenvolvimento
11.
Trends Ecol Evol ; 38(12): 1119-1121, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37777373

RESUMO

Recently, Zylstra et al. reported that wet sclerophyll forest left unburnt for 75 years experiences a marked decrease in flammability, requiring a radical rethink about fire management. This also highlights the vertical dimension of fires, with species conservation favored by a mosaic of fire types (high pyrodiversity).


Assuntos
Incêndios , Humanos , Florestas
12.
BMC Evol Biol ; 12: 223, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23171161

RESUMO

BACKGROUND: Fires have been widespread over the last 250 million years, peaking 60-125 million years ago (Ma), and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene) but even these were constrained by the ages of the clades examined. RESULTS: Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae), occurred in fireprone habitats from 88 Ma (83-94, 95% HPD, Mid-Upper Cretaceous). This coincided with the highest atmospheric oxygen (combustibility) levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type) environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade) was delayed until 45 Ma. CONCLUSIONS: Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny) and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants.


Assuntos
Ecossistema , Incêndios , Magnoliopsida/crescimento & desenvolvimento , Filogenia , Austrália , Evolução Molecular , Fósseis , Magnoliopsida/classificação , Magnoliopsida/genética , Modelos Genéticos , Pólen/genética , Pólen/crescimento & desenvolvimento , Proteaceae/classificação , Proteaceae/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , África do Sul , Fatores de Tempo
13.
New Phytol ; 194(3): 751-759, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22348443

RESUMO

• The mapping of functional traits onto chronograms is an emerging approach for the identification of how agents of natural selection have shaped the evolution of organisms. Recent research has reported fire-dependent traits appearing among flowering plants from 60 million yr ago (Ma). Although there are many records of fossil charcoal in the Cretaceous (65-145 Ma), evidence of fire-dependent traits evolving in that period is lacking. • We link the evolutionary trajectories for five fire-adapted traits in Pinaceae with paleoatmospheric conditions over the last 250 million yr to determine the time at which fire originated as a selective force in trait evolution among seed plants. • Fire-protective thick bark originated in Pinus c. 126 Ma in association with low-intensity surface fires. More intense crown fires emerged c. 89 Ma coincident with thicker bark and branch shedding, or serotiny with branch retention as an alternative strategy. These innovations appeared at the same time as the Earth's paleoatmosphere experienced elevated oxygen levels that led to high burn probabilities during the mid-Cretaceous. • The fiery environments of the Cretaceous strongly influenced trait evolution in Pinus. Our evidence for a strong correlation between the evolution of fire-response strategies and changes in fire regime 90-125 Ma greatly backdates the key role that fire has played in the evolution of seed plants.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Incêndios , Magnoliopsida/genética , Pinus/genética , Seleção Genética , Meio Ambiente , Fósseis , Magnoliopsida/fisiologia , Oxigênio , Fenótipo , Filogenia , Pinus/fisiologia , Casca de Planta/genética , Casca de Planta/fisiologia , Sementes , Fatores de Tempo
14.
iScience ; 25(7): 104642, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800761

RESUMO

Setting the molecular clock to newly described 100-million-year-old flowering shoots of Phylica in Burmese amber enabled us to recalibrate the phylogenetic history of Rhamnaceae. We traced its origin to ∼260 million years ago (Ma) that can explain its migration within and beyond Gondwana since that time and implies an origin for flowering plants that stretches well beyond 290 Ma. Ancestral trait assignments also revealed that hard-seededness, fire-proneness, and to a lesser extent, heat-released seed dormancy, have a similarly long history in this clade.

15.
Ecol Evol ; 12(11): e9500, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381400

RESUMO

Thousands of plants produce both extrafloral nectaries (EFNs) on their leaves and nutrient-rich appendages on their diaspores (elaiosomes). Although their individual ecology is well-known, any possible functional link between these structures has almost always been ignored. Here, we recognized their co-presence in the shrub, Adenanthos cygnorum (Proteaceae), and studied their function and interaction. We observed that the same ants frequently visit both structures, seeds are attractive to vertebrate granivores but are released into a leafy cup from where they are harvested by ants and taken to their nests, from which seeds, lacking elaiosomes, germinate after fire. We showed that juvenile plants do not produce EFNs and are not visited by ants. We conclude that EFNs are not just an indirect adaptation to minimize herbivory via aggressive ant visitors (the role of a minority) but specifically enhance reproductive success in two ways: First, by inducing ants to visit the plant as a reliable food source throughout the year. Second, by promoting discovery of the seasonally available, elaiosome-bearing seeds for transport to their nests (the majority of visitors), so avoiding the risk of granivory should seeds instead fall to the ground. Parasitoid wasps play a supporting role in controlling the main insect herbivore whose larvae devour the reproductive apices. Thus, the EFN-elaiosome relationship has three components that enhance species fitness: foliage protection, seed transport, and granivore escape. A similar system has been described only once before (in an unrelated biome) and, consistent with the objectives of ecology as an integrative science, deserves wider study.

16.
Trends Plant Sci ; 27(11): 1093-1094, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055916

RESUMO

A new fossil discovery reported by Shi et al. changes our understanding of the biogeographic history of the cosmopolitan family, Rhamnaceae. Flowering shoots of the African genus Phylica (Rhamnaceae) dated at 100 million years ago (Ma) imply a 250 Ma origin of the family in fire-prone Gondwanan vegetation that enabled overland dispersal to all continents where it is currently widespread.


Assuntos
Incêndios , Rhamnaceae , Flores/genética , Fósseis
17.
Biol Rev Camb Philos Soc ; 97(4): 1612-1639, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384243

RESUMO

Seed dormancy varies greatly between species, clades, communities, and regions. We propose that fireprone ecosystems create ideal conditions for the selection of seed dormancy as fire provides a mechanism for dormancy release and postfire conditions are optimal for germination. Thus, fire-released seed dormancy should vary in type and abundance under different fire regimes. To test these predictions, we compiled data from a wide range of fire-related germination experiments for species in different ecosystems across the globe. We identified four dormancy syndromes: heat-released (physical) dormancy, smoke-released (physiological) dormancy, non-fire-released dormancy, and non-dormancy. In fireprone ecosystems, fire, in the form of heat and/or chemical by-products (collectively termed 'smoke'), are the predominant stimuli for dormancy release and subsequent germination, with climate (cold or warm stratification) and light sometimes playing important secondary roles. Fire (heat or smoke)-released dormancy is best expressed where woody vegetation is dense and fires are intense, i.e. in crown-fire ecosystems. In such environments, seed dormancy allows shade-intolerant species to take advantage of vegetation gaps created by fire and synchronize germination with optimal recruitment conditions. In grassy fireprone ecosystems (e.g. savannas), where fires are less intense but more frequent, seed dormancy is less common and dormancy release is often not directly related to fire (non-fire-released dormancy). Rates of germination, whether controls or postfire, are twice as fast in savannas than in mediterranean ecosystems. Fire-released dormancy is rare to absent in arid ecosystems and rainforests. The seeds of many species with fire-released dormancy also possess elaiosomes that promote ant dispersal. Burial by ants increases insulation of seeds from fires and places them in a suitable location for fire-released dormancy. The distribution of these dormancy syndromes across seed plants is not random - certain dormancy types are associated with particular lineages (phylogenetic conservatism). Heat-released dormancy can be traced back to fireprone floras in the 'fiery' mid-Cretaceous, followed by smoke-released dormancy, with loss of fire-related dormancy among recent events associated with the advent of open savannas and non-fireprone habitats. Anthropogenic influences are now modifying dormancy-release mechanisms, usually decreasing the role of fire as exaptive effects. We conclude that contrasting fire regimes are a key driver of the evolution and maintenance of diverse seed dormancy types in many of the world's natural ecosystems.


Assuntos
Incêndios , Dormência de Plantas , Ecossistema , Germinação/fisiologia , Filogenia , Dormência de Plantas/fisiologia , Sementes/fisiologia
18.
New Phytol ; 191(1): 184-196, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21388378

RESUMO

• Historical evidence of recurrent fire in many of the world's biomes suggests that fire may have had profound evolutionary influences on their extant floras. However, the role of fire as a selective force in the origin and evolution of plant traits remains controversial. • Using Bayesian Monte-Carlo-Markov-Chain procedures and calibration points from the fossil record, we generated a dated phylogeny for the iconic Australian genus Banksia, and reconstructed the evolutionary/chronological position of five putatively fire-related traits. • The fire-dependent trait, on-plant seed storage (serotiny), and associated fire-enhancing trait, dead floret retention, co-originated with the first appearance of Banksia 60.8 million yr ago (Palaeocene). Whether nonsprouting or resprouting is ancestral was indeterminable, but the first banksias were nonclonal. Derived traits, such as dead leaf retention (fire-enhancing) and clonality (underground budbanks; fire-avoiding), first appeared 26-16 million yr ago (Miocene) with the onset of seasonal drought and thus more frequent fire, and culminated in dead florets/bracts completely covering the persistent fruits in some species. • Thus, fire may have been a selective force in the very origin of Banksia 40 million yr before the onset of climate seasonality in the Miocene, and continued to have an impact on the direction of evolution, favouring traits consistent with adaptation to an increasingly (sometimes less) fire-prone environment.


Assuntos
Evolução Biológica , Incêndios , Proteaceae/fisiologia , Adaptação Biológica , Teorema de Bayes , Secas , Fósseis , Cadeias de Markov , Método de Monte Carlo , Filogenia , Proteaceae/classificação , Estações do Ano
20.
Ann Bot ; 106(2): 381-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20605804

RESUMO

BACKGROUND AND AIMS: Tersonia cyathiflora (Gyrostemonaceae) is a fire ephemeral with an obligate requirement for smoke to germinate. Whether it is stimulated to germinate by 3-methyl-2H-furo[2,3-c]pyran-2-one (karrikinolide, KAR(1)), the butenolide isolated from smoke that stimulates the germination of many other smoke-responsive species, is tested. METHODS: Seeds of T. cyathiflora were buried in autumn following collection and were exhumed 1 year later, as this alleviates dormancy and enables seeds to germinate in response to smoke-water. Exhumed seeds were tested with smoke-water and KAR(1). Fresh preparations of these solutions were again tested on seeds exhumed 2 months later under a broader range of conditions. They were also tested on Grevillea eriostachya (Proteaceae) and Stylidium affine (Stylidiaceae) to confirm the activity of KAR(1). KEY RESULTS: T. cyathiflora seeds germinated in response to smoke-water but not to KAR(1). In contrast, G. eriostachya and S. affine germinated in response to both smoke-water and KAR(1). CONCLUSIONS: Although many smoke-responsive seeds germinate in the presence of KAR(1), this does not apply universally. This suggests that other chemical(s) in smoke-water may play an important role in stimulating the germination of certain species.


Assuntos
4-Butirolactona/análogos & derivados , Germinação/efeitos dos fármacos , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/fisiologia , Fumaça , 4-Butirolactona/farmacologia , Sementes/efeitos dos fármacos , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA