Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 16(2): 628-637, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28733985

RESUMO

High-risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV-16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF32-51 ), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF32-51 -E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF32-51 -E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF32-51 -E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast-targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB-like structures were also seen for the cytoplasmic LG. PB-like structure formation was confirmed for both LG and LALF32-51 -E7 by TEM. LALF32-51 -E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB-like structures. This study could open a new avenue for the use of LALF32-51 as a PB-inducing peptide.


Assuntos
Nicotiana/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/efeitos dos fármacos , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/metabolismo , Folhas de Planta/genética , Nicotiana/genética
2.
Virus Genes ; 45(2): 406-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22669541

RESUMO

The complete sequences of RNA1 and RNA2 have been determined for a South African isolate of Grapevine fanleaf virus (GFLV-SAPCS3). The two RNAs are, respectively, 7,342 and 3,817 nucleotides in length, excluding the poly(A) tails. RNA1 has a large open reading frame (ORF) of 6,852 nucleotides and a 5'-UTR and a 3'-UTR of 243 and 244 nucleotides, respectively. RNA2 encodes for an ORF of 3,330 nucleotides and has the highest nucleotide identity (90.4 %) with GFLV-F13. The full length nucleotide sequence of GFLV-SAPCS3 RNA1 had the highest nucleotide identity (86.5 %) to the French isolate GFLV-F13. The 5'- and 3'-UTRs of GFLV-SAPCS3 RNA2 are 272 nucleotides and 212 nucleotides (nt) in length, respectively. The GFLV-SAPCS3 RNA2 5'-UTR is 32-53 nt longer compared to other GFLV isolates. The GFLV-SAPCS3 RNA2 5'-UTR is also more closely related to GFLV-GHu and Arabis mosaic virus (ArMV) isolates than to other GFLV isolates. Putative intra- and interspecies recombination events between GFLV and ArMV isolates involving GFLV-SAPCS3 RNA1 and RNA2 were investigated. Recombination analysis software has indicated that the GFLV-SAPCS3 5'-UTR might have evolved from a recombinational event between GFLV-F13-type and ArMV-Ta-type isolate.


Assuntos
Genoma Viral , Nepovirus/genética , RNA Viral/genética , Análise de Sequência de DNA , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Análise por Conglomerados , Evolução Molecular , Dados de Sequência Molecular , Nepovirus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Recombinação Genética , Homologia de Sequência do Ácido Nucleico , África do Sul , Vitis/virologia
3.
Papillomavirus Res ; 5: 46-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29277575

RESUMO

Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunoterapia Ativa , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunidade Celular , Camundongos , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/complicações , Plantas Geneticamente Modificadas/genética , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/virologia , Vacinas de DNA/uso terapêutico
4.
PLoS One ; 12(8): e0183177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800364

RESUMO

High-risk human papillomaviruses (hr-HPVs) cause cervical cancer, the fourth most common cancer in women worldwide. A HPV-16 candidate therapeutic vaccine, LALF32-51-E7, was developed by fusing a modified E7 protein to a bacterial cell-penetrating peptide (LALF): this elicited both tumour protection and regression in pre-clinical immunization studies. In the current study, we investigated the potential for producing LALF32-51-E7 in a plant expression system by evaluating the effect of subcellular localization and usage of different expression vectors and gene silencing suppressors. The highest expression levels of LALF32-51-E7 were obtained by using a self-replicating plant expression vector and chloroplast targeting, which increased its accumulation by 27-fold compared to cytoplasmic localization. The production and extraction of LALF32-51-E7 was scaled-up and purification optimized by affinity chromatography. If further developed, this platform could potentially allow for the production of a more affordable therapeutic vaccine for HPV-16. This would be extremely relevant in the context of developing countries, where cervical cancer and other HPV-related malignancies are most prevalent, and where the population have limited or no access to preventative vaccines due to their typical high costs.


Assuntos
Papillomavirus Humano 16/química , Nicotiana/genética , Proteínas E7 de Papillomavirus/biossíntese , Vacinas contra Papillomavirus/biossíntese , Peptídeos/metabolismo , Proteínas Recombinantes/biossíntese , Agrobacterium/genética , Agrobacterium/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Inativação Gênica/imunologia , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Papillomavirus Humano 16/imunologia , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Peptídeos/genética , Peptídeos/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/metabolismo , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia
5.
Sci Rep ; 6: 20431, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853456

RESUMO

Human papillomaviruses (HPV) cause cervical cancer and have recently also been implicated in mouth, laryngeal and anogenital cancers. There are three commercially available prophylactic vaccines that show good efficacy; however, efforts to develop second-generation vaccines that are more affordable, stable and elicit a wider spectrum of cross-neutralising immunity are still ongoing. Testing antisera elicited by current and candidate HPV vaccines for neutralizing antibodies is done using a HPV pseudovirion (PsV)-based neutralisation assay (PBNA). PsVs are produced by transfection of mammalian cell cultures with plasmids expressing L1 and L2 capsid proteins, and a reporter gene plasmid, a highly expensive process. We investigated making HPV-16 PsVs in plants, in order to develop a cheaper alternative. The secreted embryonic alkaline phosphatase (SEAP) reporter gene and promoter were cloned into a geminivirus-derived plant expression vector, in order to produce circular dsDNA replicons. This was co-introduced into Nicotiana benthamiana plants with vectors expressing L1 and L2 via agroinfiltration, and presumptive PsVs were purified. The PsVs contained DNA, and could be successfully used for PBNA with anti-HPV antibodies. This is the first demonstration of the production of mammalian pseudovirions in plants, and the first demonstration of the potential of plants to make DNA vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Testes de Neutralização , Nicotiana/virologia , Papillomaviridae/imunologia , Vacinas contra Papillomavirus/imunologia , Vírion/imunologia , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Genes Reporter , Células HEK293 , Humanos , Plasmídeos , Nicotiana/genética , Transfecção , Vírion/metabolismo
6.
Viruses ; 5(7): 1815-23, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23867805

RESUMO

The complete sequences of RNA1, RNA2 and satellite RNA have been determined for a South African isolate of Grapevine fanleaf virus (GFLV-SACH44). The two RNAs of GFLV-SACH44 are 7,341 nucleotides (nt) and 3,816 nt in length, respectively, and its satellite RNA (satRNA) is 1,104 nt in length, all excluding the poly(A) tail. Multiple sequence alignment of these sequences showed that GFLV-SACH44 RNA1 and RNA2 were the closest to the South African isolate, GFLV-SAPCS3 (98.2% and 98.6% nt identity, respectively), followed by the French isolate, GFLV-F13 (87.3% and 90.1% nt identity, respectively). Interestingly, the GFLV-SACH44 satRNA is more similar to three Arabis mosaic virus satRNAs (85%-87.4% nt identity) than to the satRNA of GFLV-F13 (81.8% nt identity) and was most distantly related to the satRNA of GFLV-R2 (71.0% nt identity). Full-length infectious clones of GFLV-SACH44 satRNA were constructed. The infectivity of the clones was tested with three nepovirus isolates, GFLV-NW, Arabis mosaic virus (ArMV)-NW and GFLV-SAPCS3. The clones were mechanically inoculated in Chenopodium quinoa and were infectious when co-inoculated with the two GFLV helper viruses, but not when co-inoculated with ArMV-NW.


Assuntos
Genoma Viral , Nepovirus/genética , RNA Satélite/genética , RNA Viral/genética , Análise de Sequência de DNA , Chenopodium quinoa/virologia , Dados de Sequência Molecular , Nepovirus/isolamento & purificação , Nepovirus/fisiologia , Filogenia , RNA Satélite/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA