Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120121

RESUMO

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/genética , Rhodnius/genética , Adaptação Biológica/genética , Animais , Vetores de Doenças , Ecossistema , Equador/epidemiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Fluxo Gênico , Insetos Vetores/genética , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica , Rhodnius/patogenicidade , Transcriptoma/genética , Trypanosoma cruzi/genética
2.
Environ Health ; 23(1): 40, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622704

RESUMO

BACKGROUND: Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are becoming more extreme and expected to contribute to increases in hospital admissions for a range of health outcomes. Evaluating while accounting for these exposures (air pollution and temperature) that often occur simultaneously and may act synergistically on health is becoming more important. METHODS: We explored short-term exposure to air pollution on children's respiratory health outcomes and how extreme temperature or seasonal period modify the risk of air pollution-associated healthcare events. The main outcome measure included individual-based address located respiratory-related healthcare visits for three categories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western Montana for ages 0-17 from 2017-2020. We used a time-stratified, case-crossover analysis with distributed lag models to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 14 prior-days modified by temperature or season. RESULTS: For asthma, increases of 1 µg/m3 in PM2.5 exposure 7-13 days prior a healthcare visit date was associated with increased odds that were magnified during median to colder temperatures and winter periods. For LRTIs, 1 µg/m3 increases during 12 days of cumulative PM2.5 with peak exposure periods between 6-12 days before healthcare visit date was associated with elevated LRTI events, also heightened in median to colder temperatures but no seasonal effect was observed. For URTIs, 1 unit increases during 13 days of cumulative PM2.5 with peak exposure periods between 4-10 days prior event date was associated with greater risk for URTIs visits that were intensified during median to hotter temperatures and spring to summer periods. CONCLUSIONS: Delayed, short-term exposure increases of PM2.5 were associated with elevated odds of all three pediatric respiratory healthcare visit categories in a sparsely population area of the inter-Rocky Mountains, USA. PM2.5 in colder temperatures tended to increase instances of asthma and LRTIs, while PM2.5 during hotter periods increased URTIs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Infecções Respiratórias , Criança , Humanos , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura , Estações do Ano , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Fumaça/efeitos adversos , Asma/epidemiologia , Montana/epidemiologia , Exposição Ambiental/análise
3.
Mol Ecol ; 32(19): 5211-5227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602946

RESUMO

Understanding how human infrastructure and other landscape attributes affect genetic differentiation in animals is an important step for identifying and maintaining dispersal corridors for these species. We built upon recent advances in the field of landscape genetics by using an individual-based and multiscale approach to predict landscape-level genetic connectivity for grizzly bears (Ursus arctos) across ~100,000 km2 in Canada's southern Rocky Mountains. We used a genetic dataset with 1156 unique individuals genotyped at nine microsatellite loci to identify landscape characteristics that influence grizzly bear gene flow at multiple spatial scales and map predicted genetic connectivity through a matrix of rugged terrain, large protected areas, highways and a growing human footprint. Our corridor-based modelling approach used a machine learning algorithm that objectively parameterized landscape resistance, incorporated spatial cross validation and variable selection and explicitly accounted for isolation by distance. This approach avoided overfitting, discarded variables that did not improve model performance across withheld test datasets and spatial predictive capacity compared to random cross-validation. We found that across all spatial scales, geographic distance explained more variation in genetic differentiation in grizzly bears than landscape variables. Human footprint inhibited connectivity across all spatial scales, while open canopies inhibited connectivity at the broadest spatial scale. Our results highlight the negative effect of human footprint on genetic connectivity, provide strong evidence for using spatial cross-validation in landscape genetics analyses and show that multiscale analyses provide additional information on how landscape variables affect genetic differentiation.


Assuntos
Ecossistema , Ursidae , Humanos , Animais , Ursidae/genética , Deriva Genética , Fluxo Gênico
4.
J Hered ; 114(4): 341-353, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36738446

RESUMO

The complexity of global anthropogenic change makes forecasting species responses and planning effective conservation actions challenging. Additionally, important components of a species' adaptive capacity, such as evolutionary potential, are often not included in quantitative risk assessments due to lack of data. While genomic proxies for evolutionary potential in at-risk species are increasingly available, they have not yet been included in extinction risk assessments at a species-wide scale. In this study, we used an individual-based, spatially explicit, dynamic eco-evolutionary simulation model to evaluate the extinction risk of an endangered desert songbird, the southwestern willow flycatcher (Empidonax traillii extimus), in response to climate change. Using data from long-term demographic and habitat studies in conjunction with genome-wide ecological genomics research, we parameterized simulations that include 418 sites across the breeding range, genomic data from 225 individuals, and climate change forecasts spanning 3 generalized circulation models and 3 emissions scenarios. We evaluated how evolutionary potential, and the lack of it, impacted population trajectories in response to climate change. We then investigated the compounding impact of drought and warming temperatures on extinction risk through the mechanism of increased nest failure. Finally, we evaluated how rapid action to reverse greenhouse gas emissions would influence population responses and species extinction risk. Our results illustrate the value of incorporating evolutionary, demographic, and dispersal processes in a spatially explicit framework to more comprehensively evaluate the extinction risk of threatened and endangered species and conservation actions to promote their recovery.


Assuntos
Salix , Aves Canoras , Animais , Mudança Climática , Melhoramento Vegetal , Espécies em Perigo de Extinção , Ecossistema , Extinção Biológica , Aves Canoras/genética
5.
Emerg Infect Dis ; 27(5): 1486-1491, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900189

RESUMO

We report mean severe acute respiratory syndrome coronavirus 2 serial intervals for Montana, USA, from 583 transmission pairs; infectors' symptom onset dates occurred during March 1-July 31, 2020. Our estimate was 5.68 (95% CI 5.27-6.08) days, SD 4.77 (95% CI 4.33-5.19) days. Subperiod estimates varied temporally by nonpharmaceutical intervention type and fluctuating incidence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Incidência , Montana
6.
Environ Res ; 198: 111195, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932476

RESUMO

BACKGROUND: Mortality from the novel coronavirus disease-2019 (COVID-19) continues to rise across the United States. Evidence is emerging that environmental factors may contribute to susceptibility to disease and mortality. Greenspace exposure promotes enhanced immunity and may protect against risk of mortality among those with COVID-19. OBJECTIVES: Our objective was to determine if high county level greenspace exposure is associated with reduced risk of COVID-19 mortality. METHODS: Greenspace exposure was characterized in 3049 counties across the conterminous United States using Leaf Area Index (LAI) deciles that were derived from satellite imagery via Moderate Resolution Imaging Spectroradiometer from 2011 to 2015. COVID-19 mortality data were obtained from the Center for Systems Science and Engineering at Johns Hopkins University. We used a generalized linear mixed model to evaluate the association between county level LAI and COVID-19 mortality rate in analyses adjusted for 2015-2019 county level average total county population, older population, race, overcrowding in home, Medicaid, education, and physical inactivity. RESULTS: A dose-response association was found between greenness and reduced risk of COVID-19 mortality. COVID-19 mortality was negatively associated with LAI deciles 8 [MRR = 0.82 (95% CI: 0.72, 0.93)], 9 [MRR = 0.78 (95% CI: 0.68, 0.89)], and 10 [MRR = 0.59 (95% CI: 0.50, 0.69)]. Aside from LAI decile 5, no associations were found between the remaining LAI deciles and COVID-19 mortality. Increasing prevalence of counties with older age residents, low education attainment, Native Americans, Black Americans, and housing overcrowding were significantly associated with increased risk of COVID-19 mortality, whereas Medicaid prevalence was associated with a reduced risk. DISCUSSION: Counties with a higher amount of greenspace may be at a reduced risk of experiencing mortality due to COVID-19.


Assuntos
COVID-19 , Parques Recreativos , Negro ou Afro-Americano , Idoso , Escolaridade , Humanos , SARS-CoV-2 , Estados Unidos/epidemiologia
7.
Heredity (Edinb) ; 120(4): 329-341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29234157

RESUMO

Previously, American black bears (Ursus americanus) were thought to follow the pattern of female philopatry and male-biased dispersal. However, recent studies have identified deviations from this pattern. Such flexibility in dispersal patterns can allow individuals greater ability to acclimate to changing environments. We explored dispersal and spatial genetic relatedness patterns across ten black bear populations-including long established (historic), with known reproduction >50 years ago, and newly established (recent) populations, with reproduction recorded <50 years ago-in the Interior Highlands and Southern Appalachian Mountains, United States. We used spatially explicit, individual-based genetic simulations to model gene flow under scenarios with varying levels of population density, genetic diversity, and female philopatry. Using measures of genetic distance and spatial autocorrelation, we compared metrics between sexes, between population types (historic and recent), and among simulated scenarios which varied in density, genetic diversity, and sex-biased philopatry. In empirical populations, females in recent populations exhibited stronger patterns of isolation-by-distance (IBD) than females and males in historic populations. In simulated populations, low-density populations had a stronger indication of IBD than medium- to high-density populations; however, this effect varied in empirical populations. Condition-dependent dispersal strategies may permit species to cope with novel conditions and rapidly expand populations. Pattern-process modeling can provide qualitative and quantitative means to explore variable dispersal patterns, and could be employed in other species, particularly to anticipate range shifts in response to changing climate and habitat conditions.


Assuntos
Genética Populacional , Ursidae/genética , Distribuição Animal , Animais , Ecossistema , Feminino , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Masculino , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Análise Espacial , Estados Unidos
8.
Proc Biol Sci ; 283(1827): 20152934, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27009225

RESUMO

Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity inN. stellatus Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics.


Assuntos
Distribuição Animal , Variação Genética , Lagartos/fisiologia , Animais , Ecossistema , Feminino , Incêndios , Lagartos/genética , Masculino , Modelos Biológicos , Dinâmica Populacional , Austrália do Sul
9.
Mol Ecol ; 25(1): 104-20, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26576498

RESUMO

The spatial structure of the environment (e.g. the configuration of habitat patches) may play an important role in determining the strength of local adaptation. However, previous studies of habitat heterogeneity and local adaptation have largely been limited to simple landscapes, which poorly represent the multiscale habitat structure common in nature. Here, we use simulations to pursue two goals: (i) we explore how landscape heterogeneity, dispersal ability and selection affect the strength of local adaptation, and (ii) we evaluate the performance of several genotype-environment association (GEA) methods for detecting loci involved in local adaptation. We found that the strength of local adaptation increased in spatially aggregated selection regimes, but remained strong in patchy landscapes when selection was moderate to strong. Weak selection resulted in weak local adaptation that was relatively unaffected by landscape heterogeneity. In general, the power of detection methods closely reflected levels of local adaptation. False-positive rates (FPRs), however, showed distinct differences across GEA methods based on levels of population structure. The univariate GEA approach had high FPRs (up to 55%) under limited dispersal scenarios, due to strong isolation by distance. By contrast, multivariate, ordination-based methods had uniformly low FPRs (0-2%), suggesting these approaches can effectively control for population structure. Specifically, constrained ordinations had the best balance of high detection and low FPRs and will be a useful addition to the GEA toolkit. Our results provide both theoretical and practical insights into the conditions that shape local adaptation and how these conditions impact our ability to detect selection.


Assuntos
Adaptação Biológica/genética , Ecossistema , Interação Gene-Ambiente , Genética Populacional , Simulação por Computador , Genótipo , Modelos Genéticos , Modelos Estatísticos
10.
Infect Dis Model ; 8(1): 72-83, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36540893

RESUMO

Background: Classical infectious disease models during epidemics have widespread usage, from predicting the probability of new infections to developing vaccination plans for informing policy decisions and public health responses. However, it is important to correctly classify reported data and understand how this impacts estimation of model parameters. The COVID-19 pandemic has provided an abundant amount of data that allow for thorough testing of disease modelling assumptions, as well as how we think about classical infectious disease modelling paradigms. Objective: We aim to assess the appropriateness of model parameter estimates and prediction results in classical infectious disease compartmental modelling frameworks given available data types (infected, active, quarantined, and recovered cases) for situations where just one data type is available to fit the model. Our main focus is on how model prediction results are dependent on data being assigned to the right model compartment. Methods: We first use simulated data to explore parameter reliability and prediction capability with three formulations of the classical Susceptible-Infected-Removed (SIR) modelling framework. We then explore two applications with reported data to assess which data and models are sufficient for reliable model parameter estimation and prediction accuracy: a classical influenza outbreak in a boarding school in England and COVID-19 data from the fall of 2020 in Missoula County, Montana, USA. Results: We demonstrated the magnitude of parameter estimation errors and subsequent prediction errors resulting from data misclassification to model compartments with simulated data. We showed that prediction accuracy in each formulation of the classical disease modelling framework was largely determined by correct data classification versus misclassification. Using a classical example of influenza epidemics in an England boarding school, we argue that the Susceptible-Infected-Quarantined-Recovered (SIQR) model is more appropriate than the commonly employed SIR model given the data collected (number of active cases). Similarly, we show in the COVID-19 disease model example that reported active cases could be used inappropriately in the SIR modelling framework if treated as infected. Conclusions: We demonstrate the role of misclassification of disease data and thus the importance of correctly classifying reported data to the proper compartment using both simulated and real data. For both a classical influenza data set and a COVID-19 case data set, we demonstrate the implications of using the "right" data in the "wrong" model. The importance of correctly classifying reported data will have downstream impacts on predictions of number of infections, as well as minimal vaccination requirements.

11.
Mol Ecol Resour ; 23(6): 1458-1472, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081173

RESUMO

Adaptive capacity can present challenges for modelling as it encompasses multiple ecological and evolutionary processes such as natural selection, genetic drift, gene flow and phenotypic plasticity. Spatially explicit, individual-based models provide an outlet for simulating these complex interacting eco-evolutionary processes. We expanded the existing Cost-Distance Meta-POPulation (CDMetaPOP) framework with inducible plasticity modelled as a habitat selection behaviour, using temperature or habitat quality variables, with a genetically based selection threshold conditioned on past individual experience. To demonstrate expected results in the new module, we simulated hypothetical populations and then evaluated model performance in populations of redband trout (Oncorhynchus mykiss gairdneri) across three watersheds where temperatures induce physiological stress in parts of the stream network. We ran simulations using projected warming stream temperature data under four scenarios for alleles that: (1) confer thermal tolerance, (2) bestow plastic habitat selection, (3) give both thermal tolerance and habitat selection preference and (4) do not provide either thermal tolerance or habitat selection. Inclusion of an adaptive allele decreased declines in population sizes, but this impact was greatly reduced in the relatively cool stream networks. As anticipated with the new module, high-temperature patches remained unoccupied by individuals with the allele operating plastically after exposure to warm temperatures. Using complete habitat avoidance above the stressful temperature threshold, habitat selection reduced the overall population size due to the opportunity cost of avoiding areas with increased, but not guaranteed, mortality. Inclusion of plasticity within CDMetaPOP will provide the potential for genetic or plastic traits and 'rescue' to affect eco-evolutionary dynamics for research questions and conservation applications.


Assuntos
Evolução Biológica , Deriva Genética , Temperatura , Seleção Genética , Ecossistema
12.
Res Sq ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37886498

RESUMO

Background: Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are becoming more extreme and expected to contribute to increases in hospital admissions for a range of health outcomes. Few studies have evaluated these exposures (air pollution and temperature) that often occur simultaneously and may act synergistically on health. Methods: We explored short-term exposure to air pollution on childhood respiratory health outcomes and how extreme temperature or seasonal period modify the risk of air pollution-associated hospitalizations. The main outcome measure included all respiratory-related hospital admissions for three categories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western Montana for all individuals aged 0-17 from 2017-2020. We used a time-stratified, case-crossover analysis and distributed lag models to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 15 prior-days modified by temperature or season. Results: Short-term exposure increases of 1 µg/m3 in PM2.5 were associated with elevated odds of all three respiratory hospital admission categories. PM2.5 was associated with the largest increased odds of hospitalizations for asthma at lag 7-13 days [1.87(1.17-2.97)], for LRTI at lag 6-12 days [2.18(1.20-3.97)], and for URTI at a cumulative lag of 13 days [1.29(1.07-1.57)]. The impact of PM2.5 varied by temperature and season for each respiratory outcome scenario. For asthma, PM2.5 was associated most strongly during colder temperatures [3.11(1.40-6.89)] and the winter season [3.26(1.07-9.95)]. Also in colder temperatures, PM2.5 was associated with increased odds of LRTI hospitalization [2.61(1.15-5.94)], but no seasonal effect was observed. Finally, 13 days of cumulative PM2.5 prior to admissions date was associated with the greatest increased odds of URTI hospitalization during summer days [3.35(1.85-6.04)] and hotter temperatures [1.71(1.31-2.22)]. Conclusions: Children's respiratory-related hospital admissions were associated with short-term exposure to PM2.5. PM2.5 associations with asthma and LRTI hospitalizations were strongest during cold periods, whereas associations with URTI were largest during hot periods. Classification: environmental public health, fine particulate matter air pollution, respiratory infections.

13.
Ecol Evol ; 13(4): e9965, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038529

RESUMO

The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.

14.
Spat Spatiotemporal Epidemiol ; 38: 100437, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34353529

RESUMO

We present the first application of archetypal analysis for influenza data from 2010 to 2018 in Montana, USA. Using archetypes, we decompose the data into spatial and temporal components, allowing for a more informed analysis of spatial-temporal dynamic trends during an influenza season. Initially, we reduce the dimension of the set of counties by using a mutual information measure on the influenza time series to create a smaller, maximal mutual information network. Archetypal analysis then describes the relationship between influenza cases across counties and regions in Montana. Finally, we discuss the potential implications this analysis can have for infectious disease modeling, particularly where data is sparse and limited.


Assuntos
Doenças Transmissíveis , Influenza Humana , Doenças Transmissíveis/epidemiologia , Surtos de Doenças , Humanos , Influenza Humana/epidemiologia , População Rural , Estações do Ano , Fatores de Tempo
15.
Mol Ecol Resour ; 21(2): 394-403, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33012124

RESUMO

An assumption of correlative landscape genetic methods is that genetic differentiation at neutral markers arises solely from the degree to which the intervening landscape between individuals or populations resists gene flow. However, this assumption is violated when gene flow occurs into the sampled population from an unsampled, differentiated deme. This may happen when sampling within only a portion of a population's extent or when closely related species hybridize with the sampled population. In both cases, violation of the modelling assumptions has the potential to reduce landscape genetic model selection accuracy and result in poor inferences. We used individual-based population genetic simulations in complex landscapes within a model selection framework to explore the potential confounding effect of gene flow from unsampled demes. We hypothesized that as gene flow from outside the sampling extent increased, model selection accuracy would decrease due to the formation of a hybrid zone where allele frequencies were perturbed in a way that was not correlated with effective distances between sampled individuals. Surprisingly, we found this expectation was unfounded, because the reduced accuracy due to admixture was counteracted by an increase in allelic diversity as alleles spread from the unsampled deme into the sampled population. These new alleles increased the power to detect landscape genetic relationships and even slightly improving model selection accuracy overall. This is a reassuring result, suggesting that sampling the full extent of a population or related species that may hybridize may be unnecessary, as long as other well-established sampling requirements are met.


Assuntos
Fluxo Gênico , Genética Populacional , Modelos Genéticos , Frequência do Gene , Deriva Genética , Seleção Genética
16.
Mol Ecol Resour ; 21(8): 2766-2781, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448358

RESUMO

We introduce a new R package "MrIML" ("Mister iml"; Multi-response Interpretable Machine Learning). MrIML provides a powerful and interpretable framework that enables users to harness recent advances in machine learning to quantify multilocus genomic relationships, to identify loci of interest for future landscape genetics studies, and to gain new insights into adaptation across environmental gradients. Relationships between genetic variation and environment are often nonlinear and interactive; these characteristics have been challenging to address using traditional landscape genetic approaches. Our package helps capture this complexity and offers functions that fit and interpret a wide range of highly flexible models that are routinely used for single-locus landscape genetics studies but are rarely extended to estimate response functions for multiple loci. To demonstrate the package's broad functionality, we test its ability to recover landscape relationships from simulated genomic data. We also apply the package to two empirical case studies. In the first, we model genetic variation of North American balsam poplar (Populus balsamifera, Salicaceae) populations across environmental gradients. In the second case study, we recover the landscape and host drivers of feline immunodeficiency virus genetic variation in bobcats (Lynx rufus). The ability to model thousands of loci collectively and compare models from linear regression to extreme gradient boosting, within the same analytical framework, has the potential to be transformative. The MrIML framework is also extendable and not limited to modelling genetic variation; for example, it can quantify the environmental drivers of microbiomes and coinfection dynamics.


Assuntos
Lynx , Populus , Adaptação Fisiológica , Animais , Genômica , Aprendizado de Máquina
17.
Mol Ecol ; 19(17): 3592-602, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20618896

RESUMO

Reliable interpretation of landscape genetic analyses depends on statistical methods that have high power to identify the correct process driving gene flow while rejecting incorrect alternative hypotheses. Little is known about statistical power and inference in individual-based landscape genetics. Our objective was to evaluate the power of causal-modelling with partial Mantel tests in individual-based landscape genetic analysis. We used a spatially explicit simulation model to generate genetic data across a spatially distributed population as functions of several alternative gene flow processes. This allowed us to stipulate the actual process that is in action, enabling formal evaluation of the strength of spurious correlations with incorrect models. We evaluated the degree to which naïve correlational approaches can lead to incorrect attribution of the driver of observed genetic structure. Second, we evaluated the power of causal modelling with partial Mantel tests on resistance gradients to correctly identify the explanatory model and reject incorrect alternative models. Third, we evaluated how rapidly after the landscape genetic process is initiated that we are able to reliably detect the effect of the correct model and reject the incorrect models. Our analyses suggest that simple correlational analyses between genetic data and proposed explanatory models produce strong spurious correlations, which lead to incorrect inferences. We found that causal modelling was extremely effective at rejecting incorrect explanations and correctly identifying the true causal process. We propose a generalized framework for landscape genetics based on analysis of the spatial genetic relationships among individual organisms relative to alternative hypotheses that define functional relationships between landscape features and spatial population processes.


Assuntos
Ecologia/métodos , Fluxo Gênico , Genética Populacional , Modelos Genéticos , Modelos Estatísticos , Simulação por Computador
18.
Environ Int ; 139: 105668, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32244099

RESUMO

Particularly in rural settings, there has been little research regarding the health impacts of fine particulate matter (PM2.5) during the wildfire season smoke exposure period on respiratory diseases, such as influenza, and their associated outbreaks months later. We examined the delayed effects of PM2.5 concentrations for the short-lag (1-4 weeks prior) and the long-lag (during the prior wildfire season months) on the following winter influenza season in Montana, a mountainous state in the western United States. We created gridded maps of surface PM2.5 for the state of Montana from 2009 to 2018 using spatial regression models fit with station observations and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness data. We used a seasonal quasi-Poisson model with generalized estimating equations to estimate weekly, county-specific, influenza counts for Montana, associated with delayed PM2.5 concentration periods (short-lag and long-lag effects), adjusted for temperature and seasonal trend. We did not detect an acute, short-lag PM2.5 effect nor short-lag temperature effect on influenza in Montana. Higher daily average PM2.5 concentrations during the wildfire season was positively associated with increased influenza in the following winter influenza season (expected 16% or 22% increase in influenza rate per 1 µg/m3 increase in average daily summer PM2.5 based on two analyses, p = 0.04 or 0.008). This is one of the first observations of a relationship between PM2.5 during wildfire season and influenza months later.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Influenza Humana , Incêndios Florestais , Poluentes Atmosféricos/análise , Humanos , Influenza Humana/epidemiologia , Material Particulado/análise , Estações do Ano , Fumaça , Estados Unidos/epidemiologia
19.
Mol Ecol Resour ; 20(2): 605-615, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31769930

RESUMO

We implemented multilocus selection in a spatially-explicit, individual-based framework that enables multivariate environmental gradients to drive selection in many loci as a new module for the landscape genetics programs, CDPOP and CDMetaPOP. Our module simulates multilocus selection using a linear additive model, providing a flexible platform to evaluate a wide range of genotype-environment associations. Importantly, the module allows simulation of selection in any number of loci under the influence of any number of environmental variables. We validated the module with individual-based selection simulations under Wright-Fisher assumptions. We then evaluated results for simulations under a simple landscape selection model. Next, we simulated individual-based multilocus selection across a complex selection landscape with three loci linked to three different environmental variables. Finally, we demonstrated how the program can be used to simulate multilocus selection under varying selection strengths across different levels of gene flow in a landscape genetics framework. This new module provides a valuable addition to the study of landscape genetics, allowing for explicit evaluation of the contributions and interactions between gene flow and selection-driven processes across complex, multivariate environmental and landscape conditions.


Assuntos
Loci Gênicos , Genética Populacional , Modelos Genéticos , Simulação por Computador , Fluxo Gênico , Genótipo , Seleção Genética
20.
Mol Ecol Resour ; 18(1): 55-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28796434

RESUMO

Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions.


Assuntos
Ecossistema , Exposição Ambiental , Genética Populacional/métodos , Análise de Regressão , Adaptação Biológica , Mudança Climática , Simulação por Computador , Espécies em Perigo de Extinção , Fluxo Gênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA