Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662089

RESUMO

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Carcinoma/genética , Predisposição Genética para Doença , Inflamassomos/metabolismo , Ceratose/genética , Neoplasias Cutâneas/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Carcinoma/patologia , Cromossomos Humanos Par 17/genética , Epiderme/patologia , Mutação em Linhagem Germinativa , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Inflamassomos/genética , Interleucina-1/metabolismo , Ceratose/patologia , Proteínas NLR , Comunicação Parácrina , Linhagem , Domínios Proteicos , Pirina/química , Transdução de Sinais , Neoplasias Cutâneas/patologia , Síndrome
2.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342409

RESUMO

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Assuntos
Desmossomos , Placofilinas , Animais , Cães , Desmossomos/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células Madin Darby de Rim Canino , Transdução de Sinais , Adesão Celular , Desmoplaquinas/metabolismo
3.
J Cell Sci ; 134(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643242

RESUMO

In the skin fragility disorder epidermolysis bullosa simplex (EBS), mutations in keratin 14 (K14, also known as KRT14) or keratin 5 (K5, also known as KRT5) lead to keratinocyte rupture and skin blistering. Severe forms of EBS are associated with cytoplasmic protein aggregates, with elevated kinase activation of ERK1 and ERK2 (ERK1/2; also known as MAPK3 and MAPK1, respectively), suggesting intrinsic stress caused by misfolded keratin protein. Human keratinocyte EBS reporter cells stably expressing GFP-tagged EBS-mimetic mutant K14 were used to optimize a semi-automated system to quantify the effects of test compounds on keratin aggregates. Screening of a protein kinase inhibitor library identified several candidates that reduced aggregates and impacted on epidermal growth factor receptor (EGFR) signalling. EGF ligand exposure induced keratin aggregates in EBS reporter keratinocytes, which was reversible by EGFR inhibition. EBS keratinocytes treated with a known EGFR inhibitor, afatinib, were driven out of activation and towards quiescence with minimal cell death. Aggregate reduction was accompanied by denser keratin filament networks with enhanced intercellular cohesion and resilience, which when extrapolated to a whole tissue context would predict reduced epidermal fragility in EBS patients. This assay system provides a powerful tool for discovery and development of new pathway intervention therapeutic avenues for EBS.


Assuntos
Epidermólise Bolhosa Simples , Citoesqueleto , Descoberta de Drogas , Epidermólise Bolhosa Simples/tratamento farmacológico , Epidermólise Bolhosa Simples/genética , Humanos , Filamentos Intermediários , Queratinócitos , Queratinas/genética , Mutação/genética
4.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635908

RESUMO

Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Desmossomos , Placofilinas , Caderinas , Membrana Celular , Desmogleínas , Desmoplaquinas/genética , Humanos , Placofilinas/genética , gama Catenina
5.
Am J Med Genet A ; 185(2): 625-630, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258232

RESUMO

Self-improving dystrophic epidermolysis bullosa is a rare subtype of dystrophic epidermolysis bullosa (DEB) characterized by significant improvement in skin fragility within the first few years of life. Genetic inheritance has previously been reported as autosomal dominant or recessive with both forms harboring mutations in COL7A1. To date, there have been no reports of this rare clinical entity from various Southeast Asian ethnicities. Here, we describe the clinical and molecular features of five patients from the Southeast Asia region who presented with predominantly acral-distributed blisters and erosions in the first few days of life. Blistering resolved over several months, without appearance of new blisters. By immunofluorescence, intraepidermal retention of Type VII collagen was observed in all patient skin biopsies when investigated with antibody staining. Genetic analysis of four patients revealed pathogenic variants in COL7A1 which have not been previously reported. The clinical diagnosis in these rare patients is confirmed with molecular histology and genetic characterization.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Predisposição Genética para Doença , Anormalidades da Pele/genética , Sudeste Asiático/epidemiologia , Biópsia , Pré-Escolar , Epidermólise Bolhosa Distrófica/diagnóstico , Epidermólise Bolhosa Distrófica/fisiopatologia , Epidermólise Bolhosa Distrófica/terapia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Anormalidades da Pele/diagnóstico , Anormalidades da Pele/fisiopatologia , Anormalidades da Pele/terapia
6.
J Allergy Clin Immunol ; 146(3): 606-620.e12, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32088305

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Skin barrier defects contribute to disease initiation and development; however, underlying mechanisms remain elusive. OBJECTIVE: To understand the underlying cause of barrier defect, we investigated aberrant expression of specific microRNAs (miRNAs) in AD. Delineating the molecular mechanism of dysregulated miRNA network, we focused on identification of specific drugs that can modulate miRNA expression and repair the defective barrier in AD. METHODS: A screen for differentially expressed miRNAs between healthy skin and AD lesional skin resulted in the identification of miR-335 as the most consistently downregulated miRNA in AD. Using in silico prediction combined with experimental validation, we characterized downstream miR-335 targets and elucidated the molecular pathways by which this microRNA maintains epidermal homeostasis in healthy skin. RESULTS: miR-335 was identified as a potent inducer of keratinocyte differentiation; it exerts this effect by directly repressing SOX6. By recruiting SMARCA complex components, SOX6 suppresses epidermal differentiation and epigenetically silences critical genes involved in keratinocyte differentiation. In AD lesional skin, miR-335 expression is aberrantly lost. SOX6 is abnormally expressed throughout the epidermis, where it impairs skin barrier development. We demonstrate that miR-335 is epigenetically regulated by histone deacetylases; a screen for suitable histone deacetylase inhibitors identified belinostat as a candidate drug that can restore epidermal miR-335 expression and rescue the defective skin barrier in AD. CONCLUSION: Belinostat is of clinical significance not only as a candidate drug for AD treatment, but also as a potential means of stopping the atopic march and further progression of this systemic allergic disease.


Assuntos
Dermatite Atópica/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , MicroRNAs/genética , Fatores de Transcrição SOXD/metabolismo , Pele/metabolismo , Sulfonamidas/farmacologia , Linhagem Celular , Dermatite Atópica/genética , Humanos , Fatores de Transcrição SOXD/genética
7.
Nature ; 495(7439): 103-6, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23395958

RESUMO

Post-transcriptional switches are flexible effectors of dynamic changes in gene expression. Here we report a new post-transcriptional switch that dictates the spatiotemporal and mutually exclusive expression of two alternative gene products from a single transcript. Expression of primate-specific exonic microRNA-198 (miR-198), located in the 3'-untranslated region of follistatin-like 1 (FSTL1) messenger RNA, switches to expression of the linked open reading frame of FSTL1 upon wounding in a human ex vivo organ culture system. We show that binding of a KH-type splicing regulatory protein (KSRP, also known as KHSRP) to the primary transcript determines the fate of the transcript and is essential for the processing of miR-198: transforming growth factor-ß signalling switches off miR-198 expression by downregulating KSRP, and promotes FSTL1 protein expression. We also show that FSTL1 expression promotes keratinocyte migration, whereas miR-198 expression has the opposite effect by targeting and inhibiting DIAPH1, PLAU and LAMC2. A clear inverse correlation between the expression pattern of FSTL1 (pro-migratory) and miR-198 (anti-migratory) highlights the importance of this regulatory switch in controlling context-specific gene expression to orchestrate wound re-epithelialization. The deleterious effect of failure of this switch is apparent in non-healing chronic diabetic ulcers, in which expression of miR-198 persists, FSTL1 is absent, and keratinocyte migration, re-epithelialization and wound healing all fail to occur.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , RNA Mensageiro/genética , Transcrição Gênica/genética , Cicatrização/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Éxons/genética , Proteínas Relacionadas à Folistatina/biossíntese , Forminas , Humanos , Técnicas In Vitro , Queratinócitos/citologia , Queratinócitos/metabolismo , Laminina/antagonistas & inibidores , Laminina/metabolismo , Fases de Leitura Aberta/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Pele/citologia , Pele/lesões , Pele/metabolismo , Pele/patologia , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
9.
J Invest Dermatol ; 144(4): 748-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38099888

RESUMO

Pachyonychia congenita (PC) is a dominantly inherited genetic disorder of cornification. PC stands out among other genodermatoses because despite its rarity, it has been the focus of a very large number of pioneering translational research efforts over the past 2 decades, mostly driven by a patient support organization, the Pachyonychia Congenita Project. These efforts have laid the ground for innovative strategies that may broadly impact approaches to the management of other inherited cutaneous and noncutaneous diseases. This article outlines current avenues of research in PC, expected outcomes, and potential hurdles.


Assuntos
Ceratodermia Palmar e Plantar , Paquioníquia Congênita , Humanos , Paquioníquia Congênita/diagnóstico , Paquioníquia Congênita/genética , Paquioníquia Congênita/terapia , Ceratodermia Palmar e Plantar/genética , Administração Cutânea , Apoptose , Diferenciação Celular , Mutação
10.
Dev Dyn ; 240(8): 1958-63, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21761481

RESUMO

Fermitin genes are highly conserved and encode cytocortex proteins that mediate integrin signalling. Fermitin 1 (Kindlin1) is implicated in Kindler syndrome, a human skin blistering disorder. We report the isolation of the three Fermitin orthologs from Xenopus laevis embryos and describe their developmental expression patterns. Fermitin 1 is expressed in the skin, otic and olfactory placodes, pharyngeal arches, pronephric duct, and heart. Fermitin 2 is restricted to the somites and neural crest. Fermitin 3 is expressed in the notochord, central nervous system, cement gland, ventral blood islands, vitelline veins, and myeloid cells. Our findings are consistent with the view that Fermitin 1 is generally expressed in the skin, Fermitin 2 in muscle, and Fermitin 3 in hematopoietic lineages. Moreover, we describe novel sites of Fermitin gene expression that extend our knowledge of this family. Our data provide a basis for further functional analysis of the Fermitin family in Xenopus laevis.


Assuntos
Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animais , Embrião não Mamífero/anatomia & histologia , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/genética , Distribuição Tecidual , Proteínas de Xenopus/genética , Xenopus laevis/anatomia & histologia
11.
FASEB Bioadv ; 4(10): 631-637, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36238363

RESUMO

Organotypic skin cultures represent in vitro models of skin which can be used for disease modeling, tissue engineering, and screening applications. Non-human collagen is currently the gold standard material used for the construction of the supporting matrix, however, its clinical applications are limited due to its xenogeneic origin. We have developed a novel peptide hydrogel-based skin construct that shows a pluristratified epidermis, basement membrane, and dermal compartment after 3 weeks of in vitro culture. Peptide-based constructs were compared to collagen-based constructs and stratification marker expression was histologically higher in peptide constructs than in collagen constructs. Transepithelial electrical resistance also showed mature barrier function in peptide constructs. This study presents a novel application of the self-assembling peptide hydrogel in a defined xeno-free in vitro system.

12.
JID Innov ; 2(2): 100096, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265936

RESUMO

Epidermolysis bullosa is a group of severe skin blistering disorders, which currently have no cure. The pathology of epidermolysis bullosa is recognized as having an inflammatory component, but the role of inflammation in different epidermolysis bullosa disorders is unclear. Epidermolysis bullosa simplex (EBS) is primarily caused by sequence variants in keratin genes; its most severe form, EBS generalized severe, is characterized by aggregates of keratin proteins, and cell models of EBS generalized severe show constitutively elevated stress. IFN-γ is a major mediator of inflammation, and we show that the addition of IFN-γ alone to disease model keratinocytes promotes keratin aggregation, decreases cell-cell junctions, delays wound closure, and reduces cell proliferation. IFN-γ exposure weakens the intercellular cohesion of monolayers on mechanical stress, with IFN-γ-treated EBS monolayers more fragmented than IFN-γ-treated wild-type monolayers. A humanized monoclonal antibody to IFN-γ neutralized the detrimental effects on keratinocytes, restoring cell proliferation, increasing cell-cell adhesion, accelerating wound closure in the presence of IFN-γ, and reducing IFN-γ-mediated keratin aggregation in EBS cells. These suggest that treatment with IFN-γ blocking antibodies may constitute a promising new therapeutic strategy for patients with EBS and may also have ameliorating effects on other inflammatory skin diseases.

13.
J Cell Biol ; 174(2): 169-74, 2006 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-16831889

RESUMO

Keratins are intermediate filament-forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species.


Assuntos
Queratinas/classificação , Terminologia como Assunto , Animais , Humanos , Queratinas/química , Queratinas/genética , Mamíferos , Pseudogenes/genética
14.
Exp Cell Res ; 315(17): 2995-3003, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19616543

RESUMO

The intermediate filament cytoskeleton is essential for the development and maintenance of normal tissue function. A number of diverse recent observations implicate these filament systems in sensing stress and protecting cells against its worst consequences. Cells expressing severely disruptive keratin mutations, characteristic of Dowling-Meara EBS, were previously reported to show elevated responses to physiological stress, and partial disassembly of cell junctions was reported upon direct mechanical stress to the cells. Gene expression microarray analysis has therefore been used here to examine the broad spectrum of effects of mutant keratins. Many genes associated with keratins and other components of the cytoskeleton showed altered expression levels; in particular, many cell junction components are down-regulated in EBS cells. That this is due to the expression of the mutant keratins, and not to other genetic variables, is supported by observation of the same effects in isogenic cells generated from wild type keratinocytes transfected with the same keratin mutations in the helix boundary motifs of K14 or K5. Whilst the mechanism underlying this is unclear, these findings may help to explain other aspects of EBS-associated pathology, such as faster scratch wound migration, or acantholysis (cell-cell separation) in patients' skin. Constitutive stress combined with constitutively weakened cell junctions may also contribute to a recently reported increased risk of non-melanoma skin cancer in EBS patients.


Assuntos
Conexinas/metabolismo , Epidermólise Bolhosa/genética , Queratina-14/genética , Queratina-5/genética , Queratinócitos/fisiologia , Técnicas de Cultura de Células , Linhagem Celular , Conexinas/genética , DNA Complementar/genética , Regulação para Baixo , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Junções Comunicantes/fisiologia , Humanos , Queratina-14/isolamento & purificação , Queratina-5/isolamento & purificação , Queratinócitos/patologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Pressão Osmótica , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação
16.
Exp Cell Res ; 314(10): 2066-75, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18410923

RESUMO

Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Células Epiteliais/fisiologia , Regulação Enzimológica da Expressão Gênica , Queratinas/metabolismo , Pressão Osmótica , Animais , Linhagem Celular , Fosfatases de Especificidade Dupla/genética , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Humanos , Queratinas/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Concentração Osmolar
17.
Sci Rep ; 9(1): 18561, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811191

RESUMO

The long-term expansion of keratinocytes under conditions that avoid xenogeneic components (i.e. animal serum- and feeder cell-free) generally causes diminished proliferation and increased terminal differentiation. Here we present a culture system free of xenogeneic components that retains the self-renewal capacity of primary human keratinocytes. In vivo the extracellular matrix (ECM) of the tissue microenvironment has a major influence on a cell's fate. We used ECM from human dermal fibroblasts, cultured under macromolecular crowding conditions to facilitate matrix deposition and organisation, in a xenogeneic-free keratinocyte expansion protocol. Phospholipase A2 decellularisation produced ECM whose components resembled the core matrix composition of natural dermis by proteome analyses. Keratinocytes proliferated rapidly on these matrices, retained their small size, expressed p63, lacked keratin 10 and rarely expressed keratin 16. The colony forming efficiency of these keratinocytes was enhanced over that of keratinocytes grown on collagen I, indicating that dermal fibroblast-derived matrices maintain the in vitro expansion of keratinocytes in a stem-like state. Keratinocyte sheets formed on such matrices were multi-layered with superior strength and stability compared to the single-layered sheets formed on collagen I. Thus, keratinocytes expanded using our xenogeneic-free protocol retained a stem-like state, but when triggered by confluence and calcium concentration, they stratified to produce epidermal sheets with a potential clinical use.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Derme/citologia , Células Alimentadoras/citologia , Células Alimentadoras/metabolismo , Fibroblastos/citologia , Humanos , Queratinócitos/transplante , Transplante de Pele/métodos
18.
Hum Mutat ; 29(3): 351-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18033728

RESUMO

We describe a revised and expanded database on human intermediate filament proteins, a major component of the eukaryotic cytoskeleton. The family of 70 intermediate filament genes (including those encoding keratins, desmins, and lamins) is now known to be associated with a wide range of diverse diseases, at least 72 distinct human pathologies, including skin blistering, muscular dystrophy, cardiomyopathy, premature aging syndromes, neurodegenerative disorders, and cataract. To date, the database catalogs 1,274 manually-curated pathogenic sequence variants and 170 allelic variants in intermediate filament genes from over 459 peer-reviewed research articles. Unrelated cases were collected from all of the six sequence homology groups and the sequence variations were described at cDNA and protein levels with links to the related diseases and reference articles. The mutations and polymorphisms are presented in parallel with data on protein structure, gene, and chromosomal location and basic information on associated diseases. Detailed statistics relating to the variants records in the database are displayed by homology group, mutation type, affected domain, associated diseases, and nucleic and amino acid substitutions. Multiple sequence alignment algorithms can be run from queries to determine DNA or protein sequence conservation. Literature sources can be interrogated within the database and external links are provided to public databases. The database is freely and publicly accessible online at www.interfil.org (last accessed 13 September 2007). Users can query the database by various keywords and the search results can be downloaded. It is anticipated that the Human Intermediate Filament Database (HIFD) will provide a useful resource to study human genome variations for basic scientists, clinicians, and students alike.


Assuntos
Bases de Dados Genéticas , Proteínas de Filamentos Intermediários/genética , Família Multigênica , Algoritmos , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , DNA Complementar/genética , Humanos , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Alinhamento de Sequência/estatística & dados numéricos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
19.
J Dermatol Sci ; 51(3): 151-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18495438

RESUMO

The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant-negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real-time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this "first-in-skin" siRNA may herald a paradigm shift in the treatment of dominant-negative genetic disorders.


Assuntos
Paquioníquia Congênita/genética , Paquioníquia Congênita/terapia , RNA Interferente Pequeno/uso terapêutico , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/terapia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Queratina-6/genética , Modelos Genéticos , Mutação Puntual , RNA Interferente Pequeno/genética
20.
Trends Genet ; 19(5): 278-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12711220

RESUMO

A large number of mutations in keratin genes underlie inherited tissue fragility disorders of epithelia. The genotype-phenotype correlations emerging from these studies provide a rich source of information about the function of keratins that would have taken decades to achieve by a purely transgenic approach. Human disease studies are being supplemented by engineered mouse mutant studies, which give access to the effects of genetic alterations unlikely to occur naturally. Evidence is emerging that the great diversity of keratins might be required to enable cells to adapt their structure in response to different signalling pathways.


Assuntos
Epiderme/patologia , Epidermólise Bolhosa/genética , Epitélio/patologia , Hiperceratose Epidermolítica/genética , Queratinas/genética , Camundongos/genética , Mutagênese , Mutação/genética , Animais , Epidermólise Bolhosa/patologia , Genótipo , Humanos , Hiperceratose Epidermolítica/patologia , Camundongos Knockout , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA