Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Respir Cell Mol Biol ; 63(5): 637-651, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32672471

RESUMO

Cigarette smoke (CS) exposure increases the risk for acute respiratory distress syndrome in humans and promotes alveolar-capillary barrier permeability and acute lung injury in animal models. However, the underlying mechanisms are not well understood. Mitochondrial fusion and fission are essential for mitochondrial homeostasis in health and disease. In this study, we hypothesized that CS caused endothelial injury via an imbalance of mitochondrial fusion and fission and resultant mitochondrial oxidative stress and dysfunction. We noted that CS altered mitochondrial morphology by shortening mitochondrial networks and causing perinuclear accumulation of damaged mitochondria in primary rat lung microvascular endothelial cells. We also found that CS increased mitochondrial fission likely by decreasing Drp1-S637 and increasing FIS1, Drp1-S616 phosphorylation, mitochondrial translocation, and tetramerization and reduced mitochondrial fusion likely by decreasing Mfn2 in lung microvascular endothelial cells and mouse lungs. CS also caused aberrant mitophagy, increased mitochondrial oxidative stress, and reduced mitochondrial respiration. An inhibitor of mitochondrial fission and a mitochondria-specific antioxidant prevented CS-induced increased endothelial barrier dysfunction and apoptosis. Our data suggest that excessive mitochondrial fission and resultant oxidative stress are essential mediators of CS-induced endothelial injury and that inhibition of mitochondrial fission and mitochondria-specific antioxidants may be useful therapeutic strategies for CS-induced endothelial injury and associated pulmonary diseases.


Assuntos
Células Endoteliais/patologia , Pulmão/patologia , Dinâmica Mitocondrial , Fumar/efeitos adversos , Animais , Apoptose , Permeabilidade Capilar , Respiração Celular , Dinaminas/metabolismo , Pulmão/irrigação sanguínea , Masculino , Camundongos , Microvasos/patologia , Mitocôndrias/patologia , Mitofagia , Modelos Biológicos , Estresse Oxidativo , Transporte Proteico , Ratos
2.
Am J Respir Cell Mol Biol ; 57(6): 662-673, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28763253

RESUMO

Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.


Assuntos
Acroleína/efeitos adversos , Lesão Pulmonar Aguda/tratamento farmacológico , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/farmacologia , Acroleína/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Células Endoteliais/patologia , Endotélio Vascular/patologia , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos
3.
Invest New Drugs ; 30(4): 1460-70, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21809024

RESUMO

The objective of the present study was to determine the in-vitro effect of Abietyl-Isothiocyanate (ABITC), a representative of a new class of anti-cancer drugs, on endometrial cancer (EC) cell lines. ABITC at concentrations ≥1 µM displayed dose-dependent and selective cytotoxicity to EC cell lines (ECC-1, AN3CA, RL95-2) in comparison to other cancer cell lines. After treatment with ABITC, ECC-1 unlike control cells displayed hallmark features of apoptosis including chromatin condensation and nuclear fragmentation. At concentrations below the IC50, ABITC exerted anti-proliferative effects by blocking cell-cycle progression through G0/G1 and S-phase. In addition, cells attempted to counteract drug treatment by pro-survival signaling such as deactivation of JNK/SAPK and p38 MAPK and activation of AKT and ErK1/2. ABITC also altered EGF-receptor phosphorylation. At a concentration of 5 µM ABITC generated an excess amount of reactive oxygen species (ROS) and displayed pro-apoptotic signaling such as activation of caspase-8, JNK-SAPK and deactivation of PARP-1. Co-treatment with an antioxidant blocked the drug effects by reducing ROS generation, cytotoxicity and pro-apoptotic signaling. In summary, novel isothiocyanate ABITC is an anti-proliferative and selectively cytotoxic drug to EC cells in-vitro. Key mechanisms during cell death are predominantly correlated to excess generation of ROS. We suggest the further development of ABITC as a potential therapeutic by studying the drug efficacy in EC in-vivo models.


Assuntos
Abietanos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Isotiocianatos/uso terapêutico , Abietanos/química , Abietanos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Feminino , Humanos , Espaço Intracelular/metabolismo , Isotiocianatos/química , Isotiocianatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
BMC Cancer ; 12: 147, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22502731

RESUMO

BACKGROUND: Our recent study showed that tetrathiomolybdate (TM), a drug to treat copper overload disorders, can sensitize drug-resistant endometrial cancer cells to reactive oxygen species (ROS)-generating anticancer drug doxorubicin. To expand these findings in the present study we explore TM efficacy in combination with a spectrum of ROS-generating anticancer drugs including mitomycin C, fenretinide, 5-fluorouracil and doxorubicin in ovarian cancer cells as a model system. METHODS: The effects of TM alone or in combination with doxorubicin, mitomycin C, fenretinide, or 5-fluorouracil were evaluated using a sulforhodamine B assay. Flow cytometry was used to detect the induction of apoptosis and ROS generation. Immunoblot analysis was carried out to investigate changes in signaling pathways. RESULTS: TM potentiated doxorubicin-induced cytotoxicity and modulated key regulators of apoptosis (PARP, caspases, JNK and p38 MAPK) in SKOV-3 and A2780 ovarian cancer cell lines. These effects were linked to the increased production of ROS, as shown in SKOV-3 cells. ROS scavenging by ascorbic acid blocked the sensitization of cells by TM. TM also sensitized SKOV-3 to mitomycin C, fenretinide, and 5-fluorouracil. The increased cytotoxicity of these drugs in combination with TM was correlated with the activity of ROS, loss of a pro-survival factor (e.g. XIAP) and the appearance of a pro-apoptotic marker (e.g. PARP cleavage). CONCLUSIONS: Our data show that TM increases the efficacy of various anticancer drugs in ovarian cancer cells in a ROS-dependent manner.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Molibdênio/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Fenretinida/farmacologia , Citometria de Fluxo , Fluoruracila/farmacologia , Humanos , Mitomicina/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo
5.
Invest New Drugs ; 29(1): 63-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19865799

RESUMO

Coumarin derivative RKS262 belongs to a new class of potential anti-tumor agents. RKS262 was identified by structural optimization of Nifurtimox which is currently undergoing phase II clinical trials to treat high-risk neuroblastoma. In a NCI(60) cell-line assay RKS262 exhibited significant cytotoxicity in ovarian cancer cells and a variety of other cell lines exceeding effects of commercial drugs such as cisplatin, 5-FU, cyclophosphamide or sapacitabine. Various leukemia cell-lines were most sensitive (GI(50): ~ 10 nM) while several non-small cell lung cancer cell lines and few cell lines from other tissues were relatively resistant (GI(50) > 1 µM) to RKS262 treatment. The mechanism of cytotoxicity was examined using ovarian cancer cell-line OVCAR-3 as a model. RKS262 treatment resulted in a reduced mitochondria-transmembrane-depolarization potential. RKS262 effects included up-regulation of apoptotic markers and were not correlated with activation of pro-apoptotic MAP-Kinases (p38, SAP/JNK). RKS262 exerted strong inhibitory effects on oncogene ras, down-regulated DNA-pk KU-80 subunit expression and caused activation of Akt. A signature effect of RKS262 is the regulation of the mitochondrial Bcl2-family pathway. Pro-apoptotic factors Bid, Bad and Bok were up-regulated while expression of pro-survival factors Bcl-xl and Mcl-1 was inhibited. Moreover, at sub-cytotoxic doses RKS262 delayed OVCAR-3 cell-cycle progression through G2 phase and up-regulated p27 while cyclin-D1 and Cdk-6 were down-regulated, indicating that RKS262 is a specific cyclin/CDK inhibitor. In summary, RKS262 has been identified as a molecule belonging to a new class of potential chemotherapeutic agents affecting the viability of multiple cancer cell-lines and causing selective adverse effects on the viability of ovarian cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Óxidos S-Cíclicos/farmacologia , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Óxidos S-Cíclicos/síntese química , Óxidos S-Cíclicos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Curr Opin Cell Biol ; 15(3): 318-25, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12787774

RESUMO

The nucleolus is the site of ribosomal RNA synthesis, processing and ribosome maturation. Various small ribonucleoproteins also undergo maturation in the nucleolus, involving RNA modification and RNA-protein assembly. Such steps and other activities of small ribonucleoproteins also take place in Cajal (coiled) bodies. Events of ribosome biogenesis are found solely in the nucleolus, which is the final destination of small nucleolar RNAs after their traffic through Cajal bodies. However, nucleoli are just a stopping point in the intricate cellular traffic for small nuclear RNAs and other ribonucleoproteins.


Assuntos
Nucléolo Celular/fisiologia , Ribonucleoproteínas/fisiologia , Ribossomos/fisiologia , Animais , Humanos
7.
Gynecol Oncol ; 122(1): 183-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21529906

RESUMO

OBJECTIVE: Doxorubicin is a potent anti-cancer agent with efficacy against a broad range of tumors, including endometrial cancer. Doxorubicin produces reactive oxygen species (ROS) resulting in cytotoxicity. Tetrathiomolybdate (TM), a copper-chelating agent, is known to target a cellular antioxidant enzyme copper/zinc-superoxide dismutase. This study tests the hypothesis that TM can modulate antioxidants in tumor cells and render doxorubicin resistant tumor cells sensitive to doxorubicin. METHODS: The anti-cancer activities of doxorubicin and TM, as single agents and in combination, were assessed. Flow cytometric and immunoblot analysis were conducted to investigate the induction of apoptosis and changes in apoptotic signaling pathways. RESULTS: Doxorubicin-induced growth inhibition was observed in each endometrial cancer cell line (ECC-1, AN3CA, and KLE) tested with cell specificity. ECC-1 and KLE cells were found to have increased resistance to doxorubicin than AN3CA cells. Moreover, doxorubicin mediated apoptosis was greater in the AN3CA cell line than ECC-1 and KLE. The combination of doxorubicin with a sub-cytotoxic level of TM was significantly more effective at inducing apoptosis in doxorubicin resistant cell lines. CONCLUSION: Our results highlight the therapeutic potential of TM to sensitize tumor cells to doxorubicin for endometrial cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doxorrubicina/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Molibdênio/farmacologia , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Molibdênio/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Gynecol Oncol ; 123(2): 370-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21803404

RESUMO

OBJECTIVE: In human trials calcitriol and its analogs displayed unacceptable systemic toxicities including hypercalcemia. This study was designed to evaluate a novel non-hypercalcemic vitamin-D derivative (MT19c) and its anticancer effects in cultured ovarian cancer cell model. METHODS: We modified the Ergocalciferol structure to generate MT19c, a heterocyclic vitamin-D derivative. Hypercalcemic liabilities of MT19c were assessed by estimating the blood calcium levels in drug treated animals. VDR agonistic or antagonistic properties of MT19c were determined via a VDR-coactivator binding assay. The anticancer effects of MT19c were evaluated by (i) cytotoxicity studies in cancer cell lines and the National Cancer Institute (NCI(60)) cell lines, (ii) identification of apoptosis markers by microscopy and western blots, (iii) cell cycle analysis, and (iv) by studying the insulin receptor substrate-1/2 (IRS1/2) signaling in ovarian cancer cells (SKOV-3) by western blotting. RESULTS: MT19c treatment did not cause hypercalcemia in mice and showed minor VDR antagonistic activity. In a NCI(60) screen MT19c revealed cell-type specific growth inhibition. MT19c displayed superior cytotoxicity to cisplatin, calcitriol, EB1089 and Iressa in SKOV-3 cell-lines and was comparable to Taxol in our in vitro assays. In SKOV-3 cells MT19c showed caspase dependent apoptosis, DNA fragmentation and cell cycle arrest. MT19c did not alter VDR but downregulated the IGFR/IRS-1/2-MEK-ras-ERK1/2-pathway via activated TNFα-receptor/SAPK/JNK component. CONCLUSION: Our results demonstrate how structural optimization of the vitamin-D scaffold leads to identification of a non-hypercalcemic compound MT19c which exerts cytotoxicity in vitro based on a VDR-independent signaling pathway and displays potent anti-cancer activity in ovarian cancer cell models.


Assuntos
Antineoplásicos/farmacologia , Ergocalciferóis/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Cálcio/sangue , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/patologia , Receptores de Calcitriol/antagonistas & inibidores
9.
Invest New Drugs ; 28(5): 543-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19582372

RESUMO

The objective of the present study was to test the hypothesis that Calcidiol derivative B3CD qualifies as a potential anti-cancer drug in vivo employing an ovarian cancer xenograft model in mice. In addition, the selectivity of B3CD on viability and proliferation of platinum-resistant human ovarian cancer cell lines in comparison to control cell lines was analyzed in vitro. B3CD displayed cell line-specific cytotoxicity screened against a panel of ovarian and other carcinoma cell lines, endothelial and control cells. B3CD, at sub-cytotoxic concentrations, revealed stronger effects on the proliferation of SKOV-3 ovarian cancer cells vs. primary fibroblasts as determined by BrdU incorporation analysis. Treatment with B3CD at 0.5 microM resulted in highly condensed chromatin and fragmented nuclei in SKOV-3 cells but not in primary fibroblasts. B3CD induced cell death at low drug concentrations (< or = 0.5 microM) in SKOV-3 ovarian cancer cells is mediated by the p38 MAPK signaling pathway: B3CD induced p38 MAPK expression and activation in SKOV-3 cells and inhibition of p38 signaling counteracted B3CD induced cell death in vitro. An ovarian cancer cell animal model (human SKOV-3 cell derived xenografts in nude mice) revealed that tumor growth in few B3CD treated mice accelerated while the majority of B3CD treated mice displayed delayed tumor growth or full tumor regression. B3CD possesses anti-ovarian cancer properties in vitro and in vivo. We propose the further development of non-calcemic bromoacetoxy derivatives of vitamin D(3) as potential anti-cancer therapeutics.


Assuntos
Calcifediol/análogos & derivados , Calcifediol/uso terapêutico , Colecalciferol/análogos & derivados , Colecalciferol/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Calcifediol/química , Calcifediol/farmacologia , Calcitriol/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colecalciferol/química , Colecalciferol/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Estimativa de Kaplan-Meier , Camundongos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
BMC Cancer ; 10: 72, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20184758

RESUMO

BACKGROUND: Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19). METHODS: Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS) RESULTS: HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 microM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 microM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 microM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels. CONCLUSIONS: The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.


Assuntos
Adenocarcinoma/tratamento farmacológico , Quelantes/farmacologia , Hidrazonas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cobre/metabolismo , Fragmentação do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fase G2/efeitos dos fármacos , Humanos , Compostos de Ferro/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
J Cell Biol ; 162(5): 821-32, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12939253

RESUMO

All small nuclear RNAs (snRNAs) of the [U4/U6.U5] tri-snRNP localize transiently to nucleoli, as visualized by microscopy after injection of fluorescein-labeled transcripts into Xenopus laevis oocyte nuclei. Here, we demonstrate that these RNAs traffic to nucleoli independently of one another, because U4 snRNA deleted in the U6 base-pairing region still localizes to nucleoli. Furthermore, depletion of endogenous U6 snRNA does not affect nucleolar localization of injected U4 or U5. The wild-type U4 transcripts used here are functional: they exhibit normal nucleocytoplasmic traffic, associate with Sm proteins, form the [U4/U6] di-snRNP, and localize to nucleoli and Cajal bodies. The nucleolar localization element (NoLE) of U4 snRNA was mapped by mutagenesis. Neither the 5'-cap nor the 3'-region of U4, which includes the Sm protein binding site, are essential for nucleolar localization. The only region in U4 snRNA required for nucleolar localization is the 5'-proximal stem loop, which contains the binding site for the NHPX/15.5-kD protein. Even mutation of just five nucleotides, essential for binding this protein, impaired U4 nucleolar localization. Intriguingly, the NHPX/15.5-kD protein also binds the nucleolar localization element of box C/D small nucleolar RNAs, suggesting that this protein might mediate nucleolar localization of several small RNAs.


Assuntos
Nucléolo Celular/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Autoantígenos , Sítios de Ligação , Corpos Enovelados/química , Humanos , Microinjeções , Conformação de Ácido Nucleico , Oócitos/fisiologia , Capuzes de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Xenopus laevis , Proteínas Centrais de snRNP
12.
Gynecol Oncol ; 109(2): 240-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18329084

RESUMO

OBJECTIVE: A novel indole ethyl isothiocyanate derivative (7Me-IEITC) was defined as a potent growth-suppressing agent to cell lines derived from ovarian cancers. Key mechanisms of the cellular response in vitro were studied and suggest a potential of 7Me-IEITC as a therapeutic drug. METHODS: The viability of ovarian cancer cell lines (SKOV-3, OVCAR-3) in comparison to pancreatic and prostate cancer cell lines, primary fibroblast and immortalized trophoblasts after treatment with 7Me-IEITC was analyzed. Morphological and apoptotic responses of SKOV-3 were studied by fluorescence microscopy (DAPI staining, TUNEL assay). SKOV-3 proliferation was estimated by a standardized BrdU incorporation assay. The phosphorylation of MAP-Kinases, pro-survival factors and the activation of caspases and PARP-1 were analyzed by western blotting. Changes of the mitochondrial transmembrane-potential and in cell-cycle progression were studied by FACS analysis. MAP-Kinase and caspase inhibitors were employed in cytotoxicity studies. RESULTS: 7Me-IEITC selectively reduced the viability of SKOV-3, OVCAR-3, BXPC-3 and PC-3 cells (IC(50) values < or = 5 microM), while the viability of fibroblasts or trophoblasts remained un-affected at concentrations below 20 microM. 7Me-IEITC treatment down-regulated pro-survival kinases and transcription factors (STAT-3, IKKalpha and NF-kappaB), caused rapid loss of the mitochondrial transmembrane-potential and inactivation of PARP-1 along with activation of caspases. The use of p38 MAP-Kinase-and caspase inhibitors suppressed the cytotoxicity of the drug. 7Me-IEITC acted as an anti-proliferative agent and arrested the cell-cycle progression of SKOV-3 in G2/M phase. CONCLUSION: 7Me-IEITC is a potent and growth-suppressing agent to cell lines derived from ovarian cancers by causing deactivation of survival signals, apoptosis, and cell-cycle arrest.


Assuntos
Adenocarcinoma/fisiopatologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Isocianatos/farmacologia , Neoplasias Ovarianas/fisiopatologia , Platina/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/fisiopatologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia
13.
Mol Biol Cell ; 13(9): 3123-37, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12221120

RESUMO

Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3' end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3'-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3' hydroxyl of U6 snRNA to a 3' phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies.


Assuntos
Nucléolo Celular/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Corpos Enovelados/metabolismo , DNA/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Oócitos/metabolismo , Testes de Precipitina , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Xenopus/embriologia
14.
Sci Rep ; 4: 3574, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24389815

RESUMO

Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1α. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer.


Assuntos
Divisão Celular/genética , Expressão Gênica , Neoplasias Ovarianas/patologia , Proteínas/genética , Animais , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/tratamento farmacológico , Proteínas/metabolismo , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
15.
Genes Cancer ; 4(11-12): 524-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24386512

RESUMO

Hypercalcemia remains a major impediment to the clinical use of vitamin D in cancer treatment. Approaches to remove hypercalcemia and development of nonhypercalcemic agents can lead to the development of vitamin D-based therapies for treatment of various cancers. In this report, in vitro and in vivo anticancer efficacy, safety, and details of vitamin D receptor (VDR) interactions of PT19c, a novel nonhypercalcemic vitamin D derived anticancer agent, are described. PT19c was synthesized by bromoacetylation of PTAD-ergocalciferol adduct. Broader growth inhibitory potential of PT19c was evaluated in a panel of chemoresistant breast, renal, ovarian, lung, colon, leukemia, prostate, melanoma, and central nervous system cancers cell line types of NCI60 cell line panel. Interactions of PT19c with VDR were determined by a VDR transactivation assay in a VDR overexpressing VDR-UAS-bla-HEK293 cells, in vitro VDR-coregulator binding, and molecular docking with VDR-ligand binding domain (VDR-LBD) in comparison with calcitriol. Acute toxicity of PT19c was determined in nontumored mice. In vivo antitumor efficacy of PT19c was determined via ovarian and endometrial cancer xenograft experiments. Effect of PT19c on actin filament organization and focal adhesion formation was examined by microscopy. PT19c treatment inhibited growth of chemoresistant NCI60 cell lines (log10GI50 ~ -4.05 to -6.73). PT19c (10 mg/kg, 35 days) reduced growth of ovarian and endometrial xenograft tumor without hypercalcemia. PT19c exerted no acute toxicity up to 400 mg/kg (QDx1) in animals. PT19c showed weak VDR antagonism, lack of VDR binding, and inverted spatial accommodation in VDR-LBD. PT19c caused actin filament dysfunction and inhibited focal adhesion in SKOV-3 cells. PT19c is a VDR independent nonhypercalcemic vitamin D-derived agent that showed noteworthy safety and efficacy in ovarian and endometrial cancer animal models and inhibited actin organization and focal adhesion in ovarian cancer cells.

16.
Int J Oncol ; 40(1): 99-108, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21994123

RESUMO

Optimized purification of oligomeric proanthocyanidines (PAC) from cranberry generated PAC-1A which selectively affected the viability of various neuroblastoma (NB) cell lines representing a spectrum of high-risk NB features. PAC-1A caused a loss of mitochondrial transmembrane depolarization potential (∆Ψm) and increased generation of reactive oxygen species (ROS) which was directly correlated to the modulation of apoptotic marker proteins in SMS-KCNR cells. PAC-1A reduced the expression of pro-survival (Bcl-2, MCL-1, Bcl-xL) and increased levels of pro-apoptotic (Bax, Bad, Bid) Bcl family proteins, upregulated the activity of SAPK/JNK MAPK and downregulated expression or activity of PI3K/AKT/mTOR pathway components. PAC-1A increased the cellular uptake/retention of cyclophosphamide (CP). PAC-1A and CP synergistically increased cytotoxicity and expression of pro-apoptotic markers, reduced cellular glutathione (GSH) and superoxide dismutase (SOD) levels. Additional features of PAC-1A as an anticancer drug as shown in SMS-KCNR NB cells include delay of cell cycle progression and induction of cell death via TNF-family death receptor activity, thus, targeting both the extrinsic and intrinsic pathway of apoptosis. PAC-1A partially blocked the cell cycle in G2/M phase which correlated with a decrease of the G0/G1 subpopulation, upregulation of cyclin D1 and downregulation of CDK6 and p27 expression. In summary, PAC-1A has demonstrated chemotherapeutic potential to treat a broad spectrum of NBs including highly malignant tumors that show resistance to standard chemotherapeutics and apoptotic stimuli.


Assuntos
Apoptose/efeitos dos fármacos , Ciclofosfamida/farmacocinética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proantocianidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Vaccinium macrocarpon/química , Apoptose/fisiologia , Caspases/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Frutas/química , Inativação Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , MAP Quinase Quinase 4/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Neuroblastoma/genética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Proantocianidinas/isolamento & purificação , Receptores do Fator de Necrose Tumoral/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
17.
Chem Biol Drug Des ; 79(1): 92-103, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21974809

RESUMO

This study determined the in vitro potential of novel compounds adamantyl-N-acetylcystein and adamantyl isothiocyanate to treat gynecological cancers. Adamantyl-N-acetylcystein is postulated to be an in vivo metabolite of adamantyl isothiocyanate as dietary isothiocyanates are converted to N-acetylcysteine-conjugates. A viability assay suggested that adamantyl isothiocyanate and adamantyl-N-acetylcystein are cytotoxic to cancer cells including gynecological cell lines. A NCI60 cancer cell assay revealed that growth-inhibition and cytotoxicity of adamantyl-N-acetylcystein were cell line, but not tissue type-specific. Cell cycle studies revealed that adamantyl-N-acetylcystein and adamantyl isothiocyanate arrest SKOV-3 ovarian cancer cells in G2/M phase. By TUNEL, immunoblotting, and viability studies employing caspase and p38 mitogen-activated protein kinase inhibitors, we proved that reduction in SKOV-3 viability is a consequence of DNA fragmentation and apoptosis. Cytotoxic action of adamantyl-N-acetylcystein in SKOV-3 and endometrial cancer (ECC-1, RL95-2, AN3CA, and KLE) cells required excess generation of reactive oxygen species which could be blocked by antioxidant co-treatment. Adamantyl-N-acetylcystein treatment led to modified expression or activation of apoptotic and oncogenic proteins such as JNK/SAPK, AKT, XIAP, and EGF-R for SKOV-3 and JNK/SAPK and ERK1/2 for ECC-1 cells. We suggest the further development of adamantyl-N-acetylcystein by sensitizing cells to the drug using signaling inhibitors or redox-modulating agents and by evaluating the drug efficacy in ovarian and endometrial in-vivo tumor models.


Assuntos
Acetilcisteína/análogos & derivados , Adamantano/análogos & derivados , Antineoplásicos/toxicidade , Isotiocianatos/química , Acetilcisteína/química , Acetilcisteína/metabolismo , Acetilcisteína/toxicidade , Adamantano/síntese química , Adamantano/química , Adamantano/metabolismo , Adamantano/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Isotiocianatos/síntese química , Isotiocianatos/toxicidade , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Oncol ; 40(1): 227-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21922132

RESUMO

Cranberry extracts may provide beneficial health effects in the treatment of various diseases, including cancer. However, the underlying molecular mechanisms of antineoplastic properties are not understood. We report the effect of a proanthocyanidin (PAC)-rich isolate from cranberry (PAC-1) as a therapeutic agent with dual activity to target both ovarian cancer viability and angiogenesis in vitro. PAC-1 treatment of chemotherapy-resistant SKOV-3 cells blocked cell cycle progression through the G2/M phase, increased the generation of reactive oxygen species (ROS), and induced apoptosis through activation of intrinsic and extrinsic pathway components. Cytotoxicity of PAC-1 was partially based on ROS generation and could be blocked by co-treatment with antioxidant glutathione. PAC-1 reduced the cell viability of both SKOV-3 ovarian cancer cells and HUVEC endothelial cells in a dose-dependent manner and blocked the activation of the pro-survival factor AKT. Furthermore, PAC-1 blocked vascular endothelial growth factor (VEGF)-stimulated receptor phosphorylation in endothelial cells, which correlated with the inhibition of endothelial tube formation in vitro. Our findings suggest that PAC-1 exerts potent anticancer and anti-angiogenic properties and that highly purified PAC from cranberry can be further developed to treat ovarian cancer in combinational or single-agent therapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proantocianidinas/farmacologia , Inibidores da Angiogênese/isolamento & purificação , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Frutas/química , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proantocianidinas/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vaccinium macrocarpon/química
19.
PLoS One ; 7(4): e34443, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509304

RESUMO

BACKGROUND: Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDING: Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3) xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c-VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR) antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN) activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K) activity independently of PPAR-gamma protein. SIGNIFICANCE: Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis.


Assuntos
Ergocalciferóis/química , Ácidos Graxos/biossíntese , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Sequência de Aminoácidos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cálcio/sangue , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Ácido Cítrico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Ergocalciferóis/efeitos adversos , Ergocalciferóis/metabolismo , Ergocalciferóis/farmacologia , Ácido Graxo Sintases/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Humanos , Hipercalcemia/induzido quimicamente , L-Lactato Desidrogenase/metabolismo , Malonil Coenzima A/biossíntese , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Ratos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Segurança , Transdução de Sinais/efeitos dos fármacos
20.
PLoS One ; 6(4): e19049, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559503

RESUMO

The objective of the present study was to investigate the specific effects of Iron(III)-salophene (Fe-SP) on viability, morphology, proliferation, cell cycle progression, ROS generation and pro-apoptotic MAPK activation in neuroblastoma (NB) cells. A NCI-DTP cancer screen revealed that Fe-SP displayed high toxicity against cell lines of different tumor origin but not tumor type-specificity. In a viability screen Fe-SP exhibited high cytotoxicity against all three NB cell lines tested. The compound caused cell cycle arrest in G1 phase, suppression of cells progressing through S phase, morphological changes, disruption of the mitochondrial membrane depolarization potential, induction of apoptotic markers as well as p38 and JNK MAPK activation, DNA degradation, and elevated generation of reactive oxygen species (ROS) in SMS-KCNR NB cells. In contrast to Fe-SP, non-complexed salophene or Cu(II)-SP did not raise ROS levels in NB or SKOV-3 ovarian cancer control cells. Cytotoxicity of Fe-SP and activation of caspase-3, -7, PARP, pro-apoptotic p38 and JNK MAPK could be prevented by co-treatment with antioxidants suggesting ROS generation is the primary mechanism of cytotoxic action. We report here that Fe-SP is a potent growth-suppressing and cytotoxic agent for in vitro NB cell lines and, due to its high tolerance in previous animal toxicity studies, a potential therapeutic drug to treat NB tumors in vivo.


Assuntos
Compostos Férricos/química , Sistema de Sinalização das MAP Quinases , Neuroblastoma/enzimologia , Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , DNA/metabolismo , Ativação Enzimática , Humanos , MAP Quinase Quinase 4/metabolismo , Potenciais da Membrana , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA