Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(4): e14149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38083997

RESUMO

BACKGROUND: Long COVID is highly heterogeneous, often debilitating, and may last for years after infection. The aetiology of long COVID remains uncertain. Examination of potential serological markers of long COVID, accounting for clinical covariates, may yield emergent pathophysiological insights. METHODS: In adherence to PRISMA guidelines, we carried out a rapid review of the literature. We searched Medline and Embase for primary observational studies that compared IgG response in individuals who experienced COVID-19 symptoms persisting ≥12 weeks post-infection with those who did not. We examined relationships between serological markers and long COVID status and investigated sources of inter-study variability, such as severity of acute illness, long COVID symptoms assessed and target antigen(s). RESULTS: Of 8018 unique records, we identified 29 as being eligible for inclusion in synthesis. Definitions of long COVID varied. In studies that reported anti-nucleocapsid (N) IgG (n = 10 studies; n = 989 participants in aggregate), full or partial anti-Spike IgG (i.e. the whole trimer, S1 or S2 subgroups, or receptor binding domain, n = 19 studies; n = 2606 participants), or neutralizing response (n = 7 studies; n = 1123 participants), we did not find strong evidence to support any difference in serological markers between groups with and without persisting symptoms. However, most studies did not account for severity or level of care required during acute illness, and other potential confounders. CONCLUSIONS: Pooling of studies would enable more robust exploration of clinical and serological predictors among diverse populations. However, substantial inter-study variations hamper comparability. Standardized reporting practices would improve the quality, consistency and comprehension of study findings.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Doença Aguda , Imunoglobulina G , Anticorpos Antivirais
2.
CMAJ ; 195(31): E1030-E1037, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580072

RESUMO

BACKGROUND: During the first year of the COVID-19 pandemic, the proportion of reported cases of COVID-19 among Canadians was under 6%. Although high vaccine coverage was achieved in Canada by fall 2021, the Omicron variant caused unprecedented numbers of infections, overwhelming testing capacity and making it difficult to quantify the trajectory of population immunity. METHODS: Using a time-series approach and data from more than 900 000 samples collected by 7 research studies collaborating with the COVID-19 Immunity Task Force (CITF), we estimated trends in SARS-CoV-2 seroprevalence owing to infection and vaccination for the Canadian population over 3 intervals: prevaccination (March to November 2020), vaccine roll-out (December 2020 to November 2021), and the arrival of the Omicron variant (December 2021 to March 2023). We also estimated seroprevalence by geographical region and age. RESULTS: By November 2021, 9.0% (95% credible interval [CrI] 7.3%-11%) of people in Canada had humoral immunity to SARS-CoV-2 from an infection. Seroprevalence increased rapidly after the arrival of the Omicron variant - by Mar. 15, 2023, 76% (95% CrI 74%-79%) of the population had detectable antibodies from infections. The rapid rise in infection-induced antibodies occurred across Canada and was most pronounced in younger age groups and in the Western provinces: Manitoba, Saskatchewan, Alberta and British Columbia. INTERPRETATION: Data up to March 2023 indicate that most people in Canada had acquired antibodies against SARS-CoV-2 through natural infection and vaccination. However, given variations in population seropositivity by age and geography, the potential for waning antibody levels, and new variants that may escape immunity, public health policy and clinical decisions should be tailored to local patterns of population immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Pandemias , Estudos Soroepidemiológicos , Alberta , Anticorpos Antivirais
3.
Circ Res ; 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32938299

RESUMO

Rationale: In addition to the overwhelming lung inflammation that prevails in COVID-19, hypercoagulation and thrombosis contribute to the lethality of subjects infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Platelets are chiefly implicated in thrombosis. Moreover, they can interact with viruses and are an important source of inflammatory mediators. While a lower platelet count is associated with severity and mortality, little is known about platelet function during COVID-19. Objective: To evaluate the contribution of platelets to inflammation and thrombosis in COVID-19 patients. Methods and Results: Blood was collected from 115 consecutive COVID-19 patients presenting non-severe (n=71) and severe (n=44) respiratory symptoms. We document the presence of SARS-CoV-2 RNA associated with platelets of COVID-19 patients. Exhaustive assessment of cytokines in plasma and in platelets revealed the modulation of platelet-associated cytokine levels in both non-severe and severe COVID-19 patients, pointing to a direct contribution of platelets to the plasmatic cytokine load. Moreover, we demonstrate that platelets release their alpha- and dense-granule contents in both non-severe and severe forms of COVID-19. In comparison to concentrations measured in healthy volunteers, phosphatidylserine-exposing platelet extracellular vesicles were increased in non-severe, but not in severe cases of COVID-19. Levels of D-dimers, a marker of thrombosis, failed to correlate with any measured indicators of platelet activation. Functionally, platelets were hyperactivated in COVID-19 subjects presenting non-severe and severe symptoms, with aggregation occurring at suboptimal thrombin concentrations. Furthermore, platelets adhered more efficiently onto collagen-coated surfaces under flow conditions. Conclusions: Taken together, the data suggest that platelets are at the frontline of COVID-19 pathogenesis, as they release various sets of molecules through the different stages of the disease. Platelets may thus have the potential to contribute to the overwhelming thrombo-inflammation in COVID-19, and the inhibition of pathways related to platelet activation may improve the outcomes during COVID-19.

4.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694951

RESUMO

Murine leukemia viruses (MLVs) have long been used as a research model to further our understanding of retroviruses. These simple gammaretroviruses have been studied extensively in various facets of science for nearly half a century, yet we have surprisingly little quantitative information about some of the basic features of these viral particles. These include parameters such as the genome packaging efficiency and the number of particles required for a productive infection. The reason for this knowledge gap relies primarily on the technical challenge of accurately measuring intact viral particles from infected cell supernatants. Virus-infected cells are well known to release soluble viral proteins, defective viruses, and extracellular vesicles (EVs) harboring viral proteins that may mimic viruses, all of which can skew virus titer quantifications. Flow virometry, also known as nanoscale flow cytometry or simply small-particle flow cytometry, is an emerging analytical method enabling high-throughput single-virus phenotypic characterizations. By utilizing the viral envelope glycoprotein (Env) and monodisperse light scattering characteristics as discerning parameters of intact virus particles, here, we analyzed the basic properties of Moloney MLV (M-MLV). We show that <24% of the total p30 capsid protein measured in infected cell supernatants is associated with intact viruses. We calculate that about one in five M-MLV particles contains a viral RNA genome pair and that individual intact particle infectivity is about 0.4%. These findings provide new insights into the characteristics of an extensively studied prototypical retrovirus while highlighting the benefits of flow virometry for the field of virology.IMPORTANCE Gammaretroviruses, or, more specifically, murine leukemia viruses (MLVs), have been a longstanding model for studying retroviruses. Although being extensively analyzed and dissected for decades, several facets of MLV biology are still poorly understood. One of the primary challenges has been enumerating total intact virus particles in a sample. While several analytical methods can precisely measure virus protein amounts, MLVs are known to induce the secretion of soluble and vesicle-associated viral proteins that can skew these measurements. With recent technological advances in flow cytometry, it is now possible to analyze viruses down to 90 nm in diameter with an approach called flow virometry. The technique has the added benefit of being able to discriminate viruses from extracellular vesicles and free viral proteins in order to confidently provide an intact viral particle count. Here, we used flow virometry to provide new insights into the basic characteristics of Moloney MLV.


Assuntos
Citometria de Fluxo , Produtos do Gene env/metabolismo , Genoma Viral , Vírus da Leucemia Murina de Moloney/metabolismo , Infecções por Retroviridae/metabolismo , Vírion/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3
6.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298890

RESUMO

The glycosylated Gag protein (gPr80) of murine leukemia viruses (MLVs) has been shown to exhibit multiple roles in facilitating retrovirus release, infection, and resistance to host-encoded retroviral restriction factors, such as APOBEC3, SERINC3, and SERINC5. One way in which gPr80 helps MLVs to escape host innate immune restriction is by increasing capsid stability, a feature that protects viral replication intermediates from being detected by cytosolic DNA sensors. gPr80 also increases the resistance of MLVs to deamination and restriction by mouse APOBEC3 (mA3). How the gPr80 accessory protein, with its three N-linked glycosylation sites, contributes to these resistance mechanisms is still not fully understood. Here we further characterized the function of gPr80 and, more specifically, revealed that the asparagines targeted for glycosylation in gPr80 also contribute to capsid stability through their parallel involvement in the Pr65 Gag structural polyprotein. In fact, we demonstrate that sensitivity to deamination by the mA3 and human A3 proteins is directly linked to capsid stability. We also show that full-length gPr80 is detected in purified viruses. However, our results suggest that gPr80 is inserted in the NexoCcyto orientation of a type I integral membrane protein. Additionally, our experiments have revealed the existence of a large population of Env-deficient virus-like particles (VLPs) harboring gPr80 inserted in the opposite (NcytoCexo) polarity, which is typical of type II integral membrane proteins. Overall this study provides new insight into the complex nature of the MLV gPr80 accessory protein.IMPORTANCE Viruses have evolved numerous strategies to infect, spread in, and persist in their hosts. Here we analyze the details of how the MLV-encoded glycosylated Gag (gPr80) protein protects the virus from being restricted by host innate immune defenses. gPr80 is a variant of the structural Pr65 Gag protein with an 88-amino-acid extended leader sequence that directs the protein for translation and glycosylation in the endoplasmic reticulum. This study dissects the specific contributions of gPr80 glycans and capsid stability in helping the virus to infect cells, spread, and counteract the effects of the host intrinsic restriction factor APOBEC3. Overall this study provides further insight into the elusive role of the gPr80 protein.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene gag/metabolismo , Vírus da Leucemia Murina/metabolismo , Desaminases APOBEC , Animais , Linhagem Celular , Citidina Desaminase/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Produtos do Gene gag/genética , Humanos , Vírus da Leucemia Murina/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3
7.
BMC Nephrol ; 20(1): 294, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375072

RESUMO

BACKGROUND: Although hemodialysis is a highly effective treatment for diffusive clearance of low molecular weight uremic toxins, its effect on circulating extracellular vesicles and submicron particles is less clear. The purpose of this study was to examine the impact of hemodialysis on circulating levels of submicron particles. METHODS: Plasma samples from patients were collected immediately before and after the mid-week hemodialysis session. Total submicron particles were assessed by nanoparticle tracking analysis and levels of endothelial (CD144+), platelet (CD41+), leukocyte (CD45+), and total (Annexin V+) membrane microparticles (MPs) were assessed by flow cytometry. RESULTS: Total submicron particle number was significantly lower post-dialysis with reductions in particles < 40 nm, 40-100 nm, and 100-1000 nm in size. Circulating annexin V+ MPs, platelet MPs, leukocyte MPs, and endothelial MPs were all reduced following dialysis. Assessment of protein markers suggested that extracellular vesicles were not present in the dialysate, but rather adsorbed to the dialysis membrane. CONCLUSIONS: In summary, hemodialysis is associated with reductions in circulating submicron particles including membrane MPs. Accordingly, there may be significant interdialytic variation in circulating submicron particles. Investigators interested in measuring extracellular vesicles in patients undergoing hemodialysis should therefore carefully consider the timing of biosampling.


Assuntos
Vesículas Extracelulares , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Diálise Renal , Anexina A5/sangue , Antígenos CD/sangue , Plaquetas/citologia , Plaquetas/imunologia , Caderinas/sangue , Micropartículas Derivadas de Células , Estudos de Coortes , Feminino , Citometria de Fluxo , Soluções para Hemodiálise/química , Humanos , Antígenos Comuns de Leucócito/sangue , Leucócitos/citologia , Leucócitos/imunologia , Masculino , Pessoa de Meia-Idade , Nanopartículas/análise
8.
J Virol ; 89(4): 2342-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505062

RESUMO

UNLABELLED: Retroviruses are pathogens with rapid infection cycles that can be a source of disease, genome instability, and tumor development in their hosts. Host intrinsic restriction factors, such as APOBEC3 (A3) proteins, are constitutively expressed and dedicated to interfering with the replication cycle of retroviruses. To survive, propagate, and persist, retroviruses must counteract these restriction factors, often by way of virus genome-encoded accessory proteins. Glycosylated Gag, also called glycosylated Pr80 Gag (gPr80), is a gammaretrovirus genome-encoded protein that inhibits the antiretroviral activity of mouse A3 (mA3). Here we show that gPr80 exerts two distinct inhibitory effects on mA3: one that antagonizes deamination-independent restriction and another one that inhibits its deaminase activity. More specifically, we find that the number of N-glycosylated residues in gPr80 inversely correlates with the sensitivity of a gammaretrovirus to deamination by mouse A3 and also, surprisingly, by human A3G. Finally, our work highlights that retroviruses which have successfully integrated into the mouse germ line generally express a gPr80 with fewer glycosylated sites than exogenous retroviruses. This observation supports the suggestion that modulation of A3 deamination intensity could be a desirable attribute for retroviruses to increase genetic diversification and avoid immune detection. Overall, we present here the first description of how gammaretroviruses employ posttranslational modification to antagonize and modulate the activity of a host genome-encoded retroviral restriction factor. IMPORTANCE: APOBEC3 proteins are host factors that have a major role in protecting humans and other mammals against retroviruses. These enzymes hinder their replication and intensely mutate their DNA, thereby inactivating viral progeny and the spread of infection. Here we describe a newly recognized way in which some retroviruses protect themselves against the mutator activity of APOBEC3 proteins. We show that gammaretroviruses expressing an accessory protein called glycosylated Gag, or gPr80, use the host's posttranslational machinery and, more specifically, N-linked glycosylation as a way to modulate their sensitivity to mutations by APOBEC3 proteins. By carefully controlling the amount of mutations caused by APOBEC3 proteins, gammaretroviruses can find a balance that helps them evolve and persist.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Produtos do Gene gag/metabolismo , Vírus da Leucemia Murina/imunologia , Processamento de Proteína Pós-Traducional , Desaminases APOBEC , Animais , Linhagem Celular , Citosina Desaminase/antagonistas & inibidores , Desaminação , Glicosilação , Humanos , Vírus da Leucemia Murina/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
J Gen Virol ; 96(9): 2878-2887, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048885

RESUMO

APOBEC3 (A3) proteins are host-encoded restriction factors that inhibit retrovirus infection by mutagenic deamination of cytosines in minus-strand DNA replication intermediates. APOBEC3F (A3F) and APOBEC3G (A3G) are two of the most potent A3 enzymes in humans with each having a different target DNA specificity. A3G prefers to deaminate cytosines preceded by a cytosine (5'-CC), whereas A3F preferentially targets cytosines preceded by a thymine (5'-TC). Here we performed a detailed comparative analysis of retrovirus-encoded gene sequences edited by A3F and A3G, with the aim of correlating the context and intensity of the mutations with their effects on gene function. Our results revealed that, when there are few (TGG) tryptophan codons in the sequence, both enzymes alter gene function with a similar efficiency when given equal opportunities to deaminate in their preferred target DNA context. In contrast, tryptophan-rich genes are efficiently inactivated in the presence of a low mutational burden, through termination codon generation by A3G but not A3F. Overall, our results clearly demonstrated that the target DNA specificity of an A3 enzyme along with the intensity of the mutational burden and the tryptophan content of the gene being targeted are the factors that have the most forceful influence on whether A3-induced mutations will favour either terminal inactivation or genetic diversification of a retrovirus.


Assuntos
Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , Inativação Gênica , Infecções por HIV/enzimologia , HIV-1/genética , Desaminase APOBEC-3G , Animais , Sequência de Bases , Códon , Citidina Desaminase/genética , Citosina Desaminase/genética , Genes Reporter , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Dados de Sequência Molecular , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
10.
Nucleic Acids Res ; 41(15): 7438-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761443

RESUMO

APOBEC3G (A3G) is a host-encoded protein that potently restricts the infectivity of a broad range of retroviruses. This can occur by mechanisms dependent on catalytic activity, resulting in the mutagenic deamination of nascent viral cDNA, and/or by other means that are independent of its catalytic activity. It is not yet known to what extent deamination-independent processes contribute to the overall restriction, how they exactly work or how they are regulated. Here, we show that alanine substitution of either tryptophan 94 (W94A) or 127 (W127A) in the non-catalytic N-terminal domain of A3G severely impedes RNA binding and alleviates deamination-independent restriction while still maintaining DNA mutator activity. Substitution of both tryptophans (W94A/W127A) produces a more severe phenotype in which RNA binding and RNA-dependent protein oligomerization are completely abrogated. We further demonstrate that RNA binding is specifically required for crippling late reverse transcript accumulation, preventing proviral DNA integration and, consequently, restricting viral particle release. We did not find that deaminase activity made a significant contribution to the restriction of any of these processes. In summary, this work reveals that there is a direct correlation between A3G's capacity to bind RNA and its ability to inhibit retroviral infectivity in a deamination-independent manner.


Assuntos
Domínio Catalítico , Citosina Desaminase/metabolismo , Vírus da Leucemia Murina de Moloney/fisiologia , RNA Viral/genética , Desaminases APOBEC , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Animais , Citidina Desaminase , Citosina Desaminase/genética , Desaminação , Ativação Enzimática , Células HEK293 , HIV-1/fisiologia , Humanos , Camundongos , Células NIH 3T3 , Multimerização Proteica , Transcrição Reversa , Triptofano/genética , Triptofano/metabolismo , Montagem de Vírus , Integração Viral , Liberação de Vírus
11.
Immun Inflamm Dis ; 12(7): e1342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023424

RESUMO

BACKGROUND: Epidemiological data on seasonal coronaviruses (sCoVs) may provide insight on transmission patterns and demographic factors that favor coronaviruses (CoVs) with greater disease severity. This study describes the incidence of CoVs in several high-risk groups in Ottawa, Canada, from October 2020 to March 2022. METHODS: Serological assays quantified IgG and IgM antibodies to SARS-CoV-2, HCoV-OC43, HCoV-NL63, HCoV-HKU1, and HCoV-229E. Incident infections were compared between four population groups: individuals exposed to children, transit users, immunocompromised, and controls. Associations between antibody prevalence indicative of natural infection and demographic variables were assessed using regression analyses. RESULTS: Transit users and those exposed to children were at no greater risk of infection compared to the control group. Fewer infections were detected in the immunocompromised group (p = .03). SARS-CoV-2 seroprevalence was greater in individuals with low income and within ethnic minorities. CONCLUSIONS: Our findings suggest that nonpharmaceutical interventions intended to reduce SAR-CoV-2 transmission protected populations at high risk of exposure. The re-emergence of sCoVs and other common respiratory viruses alongside SARS-CoV-2 may alter infection patterns and increase the risk in vulnerable populations.


Assuntos
COVID-19 , SARS-CoV-2 , Estações do Ano , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/imunologia , Incidência , Masculino , Feminino , SARS-CoV-2/imunologia , Criança , Adulto , Pessoa de Meia-Idade , Adolescente , Anticorpos Antivirais/sangue , Pré-Escolar , Estudos Soroepidemiológicos , Adulto Jovem , Idoso , Fatores de Risco , Canadá/epidemiologia , Lactente , Pandemias , Imunoglobulina G/sangue , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/imunologia , Imunoglobulina M/sangue
12.
Vaccine ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789373

RESUMO

BACKGROUND: The immune response to coronavirus disease 2019 (COVID-19) vaccination is stronger among adults with prior infection (hybrid immunity). It is important to understand if children demonstrate a similar response to better inform vaccination strategies. Our study investigated the humoral response after BNT162b2 COVID-19 vaccine doses in SARS-CoV-2 naïve and recovered children (5-11 years). METHODS: A multi-institutional, longitudinal, prospective cohort study was conducted. Children were enrolled in a case-ascertained antibody surveillance study in Ottawa, Ontario from September/2020-March/2021; at least one household member was severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) positive on RT-PCR. In November 2021, BNT162b2 COVID-19 vaccine was authorized for children aged 5-11 in Canada. Children enrolled in the surveillance study intending to receive two vaccine doses were invited to participate in this study from November 2021-April 2022. Main exposure was prior SARS-CoV-2 infection, defined by positive RT-PCR or SARS-CoV-2 anti-N IgG antibody presence. Primary outcome was spike IgG antibody levels measured following the first vaccine dose (2-3 weeks) and second vaccine dose (3-4 weeks). RESULTS: Of the 153 eligible children, 75 participants (median age 8.9 IQR (7.4, 10.2) years; 38 (50.7 %) female; 59 (78.7 %) Caucasian) had complete follow-up. Fifty-four (72 %) children had prior SARS-COV-2 infection. Spike IgG antibody levels are significantly higher in SARS-CoV-2 recovered participants after receiving the first dose (p < 0.001) and the second (p = 0.01) compared to infection naïve children. CONCLUSIONS AND RELEVANCE: SARS-CoV-2 recovered children (5-11 years) demonstrated higher antibody levels following first BNT162b2 vaccine dose compared with naïve children. Most reached antibody saturation two to three weeks after the first dose; a second dose didn't change the saturation level. A single vaccine dose in SARS-CoV-2 recovered children may be equivalent or superior to a 2-dose primary series in naïve children. Further research is needed on the durability and quality of a single vaccine dose in this population.

13.
Microbiol Spectr ; 12(7): e0422023, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864599

RESUMO

The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Internalização do Vírus , Replicação Viral , Humanos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano NL63/genética , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Linhagem Celular , Estações do Ano , Cinética , Receptores Virais/metabolismo , Receptores Virais/genética , Resfriado Comum/virologia , Resfriado Comum/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Coronavirus/fisiologia , Coronavirus/genética
14.
Front Public Health ; 12: 1276391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784593

RESUMO

Introduction: More than 3 years into the pandemic, there is persisting uncertainty as to the etiology, biomarkers, and risk factors of Post COVID-19 Condition (PCC). Serological research data remain a largely untapped resource. Few studies have investigated the potential relationships between post-acute serology and PCC, while accounting for clinical covariates. Methods: We compared clinical and serological predictors among COVID-19 survivors with (n = 102 cases) and without (n = 122 controls) persistent symptoms ≥12 weeks post-infection. We selected four primary serological predictors (anti-nucleocapsid (N), anti-Spike, and anti-receptor binding domain (RBD) IgG titres, and neutralization efficiency), and specified clinical covariates a priori. Results: Similar proportions of PCC-cases (66.7%, n = 68) and infected-controls (71.3%, n = 87) tested positive for anti-N IgG. More cases tested positive for anti-Spike (94.1%, n = 96) and anti-RBD (95.1%, n = 97) IgG, as compared with controls (anti-Spike: 89.3%, n = 109; anti-RBD: 84.4%, n = 103). Similar trends were observed among unvaccinated participants. Effects of IgG titres on PCC status were non-significant in univariate and multivariate analyses. Adjusting for age and sex, PCC-cases were more likely to be efficient neutralizers (OR 2.2, 95% CI 1.11-4.49), and odds was further increased among cases to report deterioration in quality of life (OR 3.4, 95% CI 1.64-7.31). Clinical covariates found to be significantly related to PCC included obesity (OR 2.3, p = 0.02), number of months post COVID-19 (OR 1.1, p < 0.01), allergies (OR 1.8, p = 0.04), and need for medical support (OR 4.1, p < 0.01). Conclusion: Despite past COVID-19 infection, approximately one third of PCC-cases and infected-controls were seronegative for anti-N IgG. Findings suggest higher neutralization efficiency among cases as compared with controls, and that this relationship is stronger among cases with more severe PCC. Cases also required more medical support for COVID-19 symptoms, and described complex, ongoing health sequelae. More data from larger cohorts are needed to substantiate results, permit subgroup analyses of IgG titres, and explore for differences between clusters of PCC symptoms. Future assessment of IgG subtypes may also elucidate new findings.


Assuntos
COVID-19 , Imunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/sangue , COVID-19/diagnóstico , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Canadá/epidemiologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/sangue , Idoso , Fatores de Risco , Biomarcadores/sangue , Síndrome de COVID-19 Pós-Aguda , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Front Immunol ; 15: 1330549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433831

RESUMO

Background: Vaccination against COVID-19 is highly effective in preventing severe disease and hospitalization, but primary COVID mRNA vaccination schedules often differed from those recommended by the manufacturers due to supply chain issues. We investigated the impact of delaying the second dose on antibody responses to COVID mRNA-vaccines in a prospective cohort of health-care workers in Quebec. Methods: We recruited participants from the McGill University Health Centre who provided serum or participant-collected dried blood samples (DBS) at 28-days, 3 months, and 6 months post-second dose and at 28-days after a third dose. IgG antibodies to SARS-CoV2 spike (S), the receptor-binding domain (RBD), nucleocapsid (N) and neutralizing antibodies to the ancestral strain were assessed by enzyme-linked immunosorbent assay (ELISA). We examined associations between long (≤89 days) versus short (<89 days) between-dose intervals and antibody response through multivariable mixed-effects models adjusted for age, sex, prior covid infection status, time since vaccine dose, and assay batch. Findings: The cohort included 328 participants who received up to three vaccine doses (>80% Pfizer-BioNTech). Weighted averages of the serum (n=744) and DBS (n=216) cohort results from the multivariable models showed that IgG anti-S was 31% higher (95% CI: 12% to 53%) and IgG anti-RBD was 37% higher (95% CI: 14% to 65%) in the long vs. short interval participants, across all time points. Interpretation: Our study indicates that extending the covid primary series between-dose interval beyond 89 days (approximately 3 months) provides stronger antibody responses than intervals less than 89 days. Our demonstration of a more robust antibody response with a longer between dose interval is reassuring as logistical and supply challenges are navigated in low-resource settings.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Estudos Prospectivos , Vacinas contra COVID-19 , RNA Viral , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Imunoglobulina G , RNA Mensageiro
16.
Vaccine ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944577

RESUMO

BACKGROUND: Immune response to COVID-19 vaccine is diminished in patients with hematologic malignancy. There is limited data regarding response to vaccine doses in these patients. PURPOSE: To quantify the humoral immune response engendered by 4th and subsequent doses of SARS-CoV-2 vaccination as measured by anti-Spike (anti-S) antibody levels, based on dried blood spot (DBS) testing, in patients with hematologic malignancies. Anti-S binds to the spike protein of the SARS-CoV-2 virus and is indicative of vaccine immunogenicity. METHODS: We conducted a prospective study of hematologic malignancies between August 2021 and January 2023 at 12 sites across Canada. Participants were followed longitudinally and submitted finger-prick DBS cards at set intervals associated with vaccination. Samples were processed via high throughput ELISA assay to detect serum antibodies against nucleocapsid (N) and spike (S) proteins. RESULTS: We obtained 3071 samples on 790 unique patients. Of these, 372 unique participants with 1840 samples had anti-S results available post-4th, 5th or 6th COVID-19 vaccine dose and were included for analysis. Three hundred thirty-three patients of the 372 participants submitted a DBS sample post 4th dose. Of these, 257 patients (77.2%) had a positive anti-S antibody. A total of 198 patients had paired samples pre- and post-dose 4, of which 59 (29.7%) had a negative anti-S antibody pre-dose 4. Of these, 20 (33.4%) developed positive anti-S antibody post-dose 4. One hundred forty-nine patients submitted a DBS sample post-dose 5. Of these, 135 patients (90.6%) had positive anti-S antibody. A total of 52 had paired samples pre- and post-dose 5. Six (8.7%) had a negative anti-S antibody pre-dose 5, of which two (33.3%) developed positive anti-S antibody post-dose 5. Of these 372 patients, 123 (34%) reported COVID-19 infection and 4 (1%) had a COVID-19 related hospitalization. There were no reported deaths from COVID-19. CONCLUSIONS: This prospective cohort study showed that humoral immune response improved with subsequent doses of COVID-19 vaccines.

17.
Vaccines (Basel) ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38793698

RESUMO

COVID-19 breakthrough infection (BTI) can occur despite vaccination. Using a multi-centre, prospective, observational Canadian cohort of people with HIV (PWH) receiving ≥2 COVID-19 vaccines, we compared the SARS-CoV-2 spike (S) and receptor-binding domain (RBD)-specific IgG levels 3 and 6 months post second dose, as well as 1 month post third dose, in PWH with and without BTI. BTI was defined as positivity based on self-report measures (data up to last study visit) or IgG data (up to 1 month post dose 3). The self-report measures were based on their symptoms and either a positive PCR or rapid antigen test. The analysis was restricted to persons without previous COVID-19 infection. Persons without BTI remained COVID-19-naïve until ≥3 months following the third dose. Of 289 participants, 92 developed BTI (31.5 infections per 100 person-years). The median days between last vaccination and BTI was 128 (IQR 67, 176), with the most cases occurring between the third and fourth dose (n = 59), corresponding to the Omicron wave. In analyses adjusted for age, sex, race, multimorbidity, hypertension, chronic kidney disease, diabetes and obesity, a lower IgG S/RBD (log10 BAU/mL) at 1 month post dose 3 was significantly associated with BTI, suggesting that a lower IgG level at this time point may predict BTI in this cohort of PWH.

18.
Front Public Health ; 11: 1240308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026284

RESUMO

Efficient and rapid identification of active SARS-CoV-2 infections has been key to monitoring and mitigating the spread of the virus. The implementation of nucleic acid testing (e.g., RT-PCR) was broadly adopted by most public health organizations at the national and community levels across the globe, which was followed by more accessible means of home testing including lateral flow immunochromatographic assay (LFA), also known as a rapid antigen test. Here we report the case of an adult female who repeatedly and consecutively tested positive by RAT (BTNX inc). This sustained false positive was not linked with an active SARS-CoV-2 infection, which was ruled out by RT-PCR and serological analyses. SARS-CoV-2 serology revealed no detectable levels of antibodies against the nucleocapsid suggesting no recent prior infection by SARS-CoV-2. This continuous false positive was limited to BTNX testing devices. This case report aims to describe that such continuous false positives can occur and describes alternative testing approaches that can be performed to confirm RAT results. In addition, broader awareness of such occurrences is warranted in the healthcare and public health community to avoid unnecessary negative impacts on individual's day to day life.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Feminino , COVID-19/diagnóstico , Teste para COVID-19
19.
Influenza Other Respir Viruses ; 17(1): e13065, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369746

RESUMO

BACKGROUND: Measures introduced during the COVID-19 pandemic intended to address the spread of SARS-CoV-2 may also influence the incidence of other common seasonal respiratory viruses (SRV). This evaluation reports laboratory-confirmed cases of common SRV in a well-defined region of central Canada to address this issue. METHODS: Surveillance data for common non-SARS-CoV-2 SRV in Ottawa, Canada, was provided by the Eastern Ontario Regional Laboratory Association (EORLA) reference virology lab. Weekly reports of the number of positive tests and the proportion that yielded positive results were analyzed from August 26, 2018, to January 2, 2022. RESULTS: A drastic reduction in influenza and other common SRV was observed during the 2020-2021 influenza season in the Ottawa region. Influenza was virtually undetected post-SARS-CoV-2 emergence. Rhinoviruses and enteroviruses were the only viruses that remained relatively unaffected during this period. CONCLUSIONS: We speculated that the introduction of nonpharmaceutical measures including masking to prevent SARS-CoV-2 transmission contributed to the near absence of SRV in the Ottawa region. These measures should remain a key component in addressing spikes in SRV activity and future pandemics.


Assuntos
COVID-19 , Influenza Humana , Humanos , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Pandemias , Estações do Ano , SARS-CoV-2
20.
Open Forum Infect Dis ; 10(8): ofad384, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37547857

RESUMO

Background: SARS-CoV-2 infections have disproportionally burdened elderly populations with excessive mortality. While several contributing factors exists, questions remain about the quality and duration of humoral antibody-mediated responses resulting from infections in unvaccinated elderly individuals. Methods: Residual serum/plasma samples were collected from individuals undergoing routine SARS-CoV-2 polymerase chain reaction testing in a community laboratory in Canada. The samples were collected in 2020, before vaccines became available. IgG, IgA, and IgM antibodies against SARS-CoV-2 nucleocapsid, trimeric spike, and its receptor-binding domain were quantified via a high-throughput chemiluminescent enzyme-linked immunosorbent assay. Neutralization efficiency was also quantified through a surrogate high-throughput protein-based neutralization assay. Results: This study analyzed SARS-CoV-2 antibody levels in a large cross-sectional cohort (N = 739), enriched for elderly individuals (median age, 82 years; 75% >65 years old), where 72% of samples tested positive for SARS-CoV-2 by polymerase chain reaction. The age group ≥90 years had higher levels of antibodies than that <65 years. Neutralization efficiency showed an age-dependent trend, where older persons had higher levels of neutralizing antibodies. Antibodies targeting the nucleocapsid had the fastest decline. IgG antibodies targeting the receptor-binding domain remained stable over time, potentially explaining the lack of neutralization decay observed in this cohort. Conclusions: Despite older individuals having the highest levels of antibodies postinfection, they are the cohort in which antibody decay was the fastest. Until a better understanding of correlates of protection is acquired, along with the protective role of nonneutralizing antibodies, booster vaccinations remain important in this demographic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA