Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7710): E1, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769713

RESUMO

In the originally published version of this Letter, the authors Arthur F. Kluge, Michael A. Patane and Ce Wang were inadvertently omitted from the author list. Their affiliations are: I-to-D, Inc., PO Box 6177, Lincoln, Massachusetts 01773, USA (A.F.K.); Mitobridge, Inc. 1030 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (M.A.P.); and China Novartis Institutes for BioMedical Research, No. 4218 Jinke Road, Zhangjiang Hi-Tech Park, Pudong District, Shanghai 201203, China (C.W.). These authors contributed to the interpretation of results and design of compounds. In addition, author 'Edward A. Kesicki' was misspelled as 'Ed Kesicki'. These errors have been corrected online.

2.
Nature ; 550(7674): 128-132, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28953875

RESUMO

The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products, bi-substrate analogues and the widely used small molecule C646, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.


Assuntos
Linhagem da Célula , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Histona Acetiltransferases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Acetilcoenzima A/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Humanos , Masculino , Camundongos , Camundongos SCID , Modelos Moleculares , Neoplasias/enzimologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/patologia , Conformação Proteica , Receptores Androgênicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo
3.
Ann Neurol ; 90(1): 76-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938021

RESUMO

OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Idoso , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Penetrância
4.
Ann Neurol ; 85(4): 600-605, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786044

RESUMO

During the 1990s, we estimated the genetic contribution to Parkinson's disease risk in a large, population-based twin registry. Because many unaffected twins were still alive, previous concordance estimates were based on incomplete information. Ninety-five percent of twins are now deceased. Here, we update concordance and heritability through 2015 using National Death Index data. In total, we identified 30 concordant and 193 discordant pairs. Proband-wise concordance was 0.20 in monozygotic and 0.13 in dizygotic pairs. Heritability was 0.27 overall, 0.83 in pairs diagnosed ≤50, and 0.19 in pairs diagnosed >50. High concordance in dizygotic twins suggests shared effects of early childhood environment. Ann Neurol 2019;85:600-605.


Assuntos
Doenças em Gêmeos/genética , Predisposição Genética para Doença/genética , Doença de Parkinson/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças em Gêmeos/epidemiologia , Feminino , Seguimentos , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/epidemiologia , Sistema de Registros , Fatores de Risco
5.
Mov Disord ; 35(10): 1755-1764, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32662532

RESUMO

BACKGROUND: The penetrance of leucine rich repeat kinase 2 (LRRK2) mutations is incomplete and may be influenced by environmental and/or other genetic factors. Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to reduce inflammation and may lower Parkinson's disease (PD) risk, but their role in LRRK2-associated PD is unknown. OBJECTIVES: The objective of this study is to evaluate the association of regular NSAID use and LRRK2-associated PD. METHODS: Symptomatic ("LRRK2-PD") and asymptomatic ("LRRK2-non-PD") participants with LRRK2 G2019S, R1441X, or I2020T variants (definitely pathogenic variant carriers) or G2385R or R1628P variants (risk variant carriers) from 2 international cohorts provided information on regular ibuprofen and/or aspirin use (≥2 pills/week for ≥6 months) prior to the index date (diagnosis date for PD, interview date for non-PD). Multivariate logistic regression was used to evaluate the relationship between regular NSAID use and PD for any NSAID, separately for ibuprofen and aspirin in all carriers and separately in pathogenic and risk variant groups. RESULTS: A total of 259 LRRK2-PD and 318 LRRK2-non-PD participants were enrolled. Regular NSAID use was associated with reduced odds of PD in the overall cohort (odds ratio [OR], 0.34; 95% confidence interval [CI], 0.21-0.57) and in both pathogenic and risk variant carriers (ORPathogenic , 0.38; 95% CI, 0.21-0.67 and ORRiskVariant , 0.19; 95% CI, 0.04-0.99). Similar associations were observed for ibuprofen and aspirin separately (ORIbuprofen , 0.19; 95% CI, 0.07-0.50 and ORAspirin , 0.51; 95% CI, 0.28-0.91). CONCLUSIONS: Regular NSAID use may be associated with reduced penetrance in LRRK2-associated PD. The LRRK2 protein is involved in inflammatory pathways and appears to be modulated by regular anti-inflammatory use. Longitudinal observational and interventional studies of NSAID exposure and LRRK2-PD are needed to confirm this association. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Anti-Inflamatórios não Esteroides/uso terapêutico , Predisposição Genética para Doença , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Penetrância
6.
Biochem J ; 469(1): 107-20, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25939886

RESUMO

Activating mutations in the leucine rich repeat protein kinase 2 (LRRK2) gene are the most common cause of inherited Parkinson's disease (PD). LRRK2 is phosphorylated on a cluster of phosphosites including Ser(910), Ser(935), Ser(955) and Ser(973), which are dephosphorylated in several PD-related LRRK2 mutants (N1437H, R1441C/G, Y1699C and I2020T) linking the regulation of these sites to PD. These serine residues are also dephosphorylated after kinase inhibition and lose 14-3-3 binding, which serves as a pharmacodynamic marker for inhibited LRRK2. Loss of 14-3-3 binding is well established, but the consequences of dephosphorylation are only now being uncovered. In the present study, we found that potent and selective inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(935) then ubiquitination and degradation of a significant fraction of LRRK2. GNE1023 treatment decreased the phosphorylation and stability of LRRK2 in expression systems and endogenous LRRK2 in A549 cells and in mouse dosing studies. We next established that LRRK2 is ubiquitinated through at least Lys(48) and Lys(63) ubiquitin linkages in response to inhibition. To investigate the link between dephosphorylation induced by inhibitor treatment and LRRK2 ubiquitination, we studied LRRK2 in conditions where it is dephosphorylated such as expression of PD mutants [R1441G, Y1699C and I2020T] or by blocking 14-3-3 binding to LRRK2 via difopein expression, and found LRRK2 is hyper-ubiquitinated. Calyculin A treatment prevents inhibitor and PD mutant induced dephosphorylation and reverts LRRK2 to a lesser ubiquitinated species, thus directly implicating phosphatase activity in LRRK2 ubiquitination. This dynamic dephosphorylation-ubiquitination cycle could explain detrimental loss-of-function phenotypes found in peripheral tissues of LRRK2 kinase inactive mutants, LRRK2 KO (knockout) animals and following LRRK2 inhibitor administration.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitinação/fisiologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Substituição de Aminoácidos , Animais , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Toxinas Marinhas , Camundongos , Mutação de Sentido Incorreto , Oxazóis/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética
7.
Neurobiol Dis ; 62: 381-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24148854

RESUMO

Parkinson's disease associated mutations in leucine rich repeat kinase 2 (LRRK2) impair mitochondrial function and increase the vulnerability of induced pluripotent stem cell (iPSC)-derived neural cells from patients to oxidative stress. Since mitochondrial DNA (mtDNA) damage can compromise mitochondrial function, we examined whether LRRK2 mutations can induce damage to the mitochondrial genome. We found greater levels of mtDNA damage in iPSC-derived neural cells from patients carrying homozygous or heterozygous LRRK2 G2019S mutations, or at-risk individuals carrying the heterozygous LRRK2 R1441C mutation, than in cells from unrelated healthy subjects who do not carry LRRK2 mutations. After zinc finger nuclease-mediated repair of the LRRK2 G2019S mutation in iPSCs, mtDNA damage was no longer detected in differentiated neuroprogenitor and neural cells. Our results unambiguously link LRRK2 mutations to mtDNA damage and validate a new cellular phenotype that can be used for examining pathogenic mechanisms and screening therapeutic strategies.


Assuntos
Dano ao DNA , DNA Mitocondrial/metabolismo , Células-Tronco Neurais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Reparo Gênico Alvo-Dirigido , Adulto , Idoso , Reparo do DNA , DNA Mitocondrial/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Pessoa de Meia-Idade , Mutação , Dedos de Zinco
8.
Mov Disord ; 29(9): 1171-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24838182

RESUMO

Increased gut permeability, inflammation, and colonic α-synuclein pathology are present in early Parkinson's disease (PD) and have been proposed to contribute to PD pathogenesis. Peptidoglycan is a structural component of the bacterial cell wall. Peptidoglycan recognition proteins (PGRPs) maintain healthy gut microbial flora by regulating the immune response to both commensal and harmful bacteria. We tested the hypothesis that variants in genes that encode PGRPs are associated with PD risk. Participants in two independent case-control studies were genotyped for 30 single-nucleotide polymorphisms (SNPs) in the four PGLYRP genes. Using logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for potential confounding variables, we conducted analyses in each study, separately and pooled. One SNP failed the assay, and three had little to no variation. The ORs were similar in both study populations. In pooled analyses, three of seven PGLYRP2 SNPs (rs3813135, rs733731, rs892145), one of five PGLYRP3 SNPs (rs2987763), and six of nine PGLYRP4 SNPs (rs10888557, rs12063091, rs3006440, rs3006448, rs3006458, and rs3014864) were significantly associated with PD risk. Association was strongest for PGLYRP4 5'untranslated region (UTR) SNP rs10888557 (GG reference, CG OR 0.6 [95%CI 0.4-0.9], CC OR 0.15 [95%CI 0.04-0.6]; log-additive P-trend, 0.0004). Common variants in PGLYRP genes are associated with PD risk in two independent studies. These results require replication, but they are consistent with hypotheses of a causative role for the gut microbiota and gastrointestinal immune response in PD.


Assuntos
Proteínas de Transporte/genética , Predisposição Genética para Doença/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Modelos Logísticos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Razão de Chances
9.
PLoS Genet ; 7(6): e1002141, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738487

RESUMO

Although the causes of Parkinson's disease (PD) are thought to be primarily environmental, recent studies suggest that a number of genes influence susceptibility. Using targeted case recruitment and online survey instruments, we conducted the largest case-control genome-wide association study (GWAS) of PD based on a single collection of individuals to date (3,426 cases and 29,624 controls). We discovered two novel, genome-wide significant associations with PD-rs6812193 near SCARB2 (p = 7.6 × 10(-10), OR = 0.84) and rs11868035 near SREBF1/RAI1 (p = 5.6 × 10(-8), OR = 0.85)-both replicated in an independent cohort. We also replicated 20 previously discovered genetic associations (including LRRK2, GBA, SNCA, MAPT, GAK, and the HLA region), providing support for our novel study design. Relying on a recently proposed method based on genome-wide sharing estimates between distantly related individuals, we estimated the heritability of PD to be at least 0.27. Finally, using sparse regression techniques, we constructed predictive models that account for 6%-7% of the total variance in liability and that suggest the presence of true associations just beyond genome-wide significance, as confirmed through both internal and external cross-validation. These results indicate a substantial, but by no means total, contribution of genetics underlying susceptibility to both early-onset and late-onset PD, suggesting that, despite the novel associations discovered here and elsewhere, the majority of the genetic component for Parkinson's disease remains to be discovered.


Assuntos
Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Internet , Doença de Parkinson/genética , Bases de Dados Factuais , Predisposição Genética para Doença , Hereditariedade/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Medição de Risco
10.
Ann Neurol ; 71(6): 776-84, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22083847

RESUMO

OBJECTIVE: Several case reports have linked solvent exposure to Parkinson disease (PD), but few studies have assessed associations with specific agents using an analytic epidemiologic design. We tested the hypothesis that exposure to specific solvents is associated with PD risk using a discordant twin pair design. METHODS: Ninety-nine twin pairs discordant for PD ascertained from the National Academy of Sciences/National Research Council World War II Veteran Twins Cohort were interviewed regarding lifetime occupations and hobbies using detailed job task-specific questionnaires. Exposures to 6 specific solvents selected a priori were estimated by expert raters unaware of case status. RESULTS: Ever exposure to trichloroethylene (TCE) was associated with significantly increased risk of PD (odds ratio [OR], 6.1; 95% confidence interval [CI] 1.2-33; p = 0.034), and exposure to perchloroethylene (PERC) and carbon tetrachloride (CCl(4) ) tended toward significance (respectively: OR, 10.5; 95% CI, 0.97-113; p = 0.053; OR, 2.3; 95% CI, 0.9-6.1; p = 0.088). Results were similar for estimates of exposure duration and cumulative lifetime exposure. INTERPRETATION: Exposure to specific solvents may increase risk of PD. TCE is the most common organic contaminant in groundwater, and PERC and CCl(4) are also ubiquitous in the environment. Our findings require replication in other populations with well-characterized exposures, but the potential public health implications are substantial.


Assuntos
Doenças em Gêmeos/epidemiologia , Exposição Ocupacional/efeitos adversos , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Solventes/toxicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Tetracloreto de Carbono/toxicidade , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , Tetracloroetileno/toxicidade , Gêmeos
11.
Ann Neurol ; 71(1): 40-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275250

RESUMO

OBJECTIVE: To test the hypothesis that variability in SNCA Rep1, a polymorphic dinucleotide microsatellite in the promoter region of the gene encoding α-synuclein, modifies the association between head injury and Parkinson's disease (PD) risk. METHODS: Participants in the Farming and Movement Evaluation (FAME) and the Study of Environmental Association and Risk of Parkinsonism using Case-Control Historical Interviews (SEARCH), 2 independent case-control studies, were genotyped for Rep1 and interviewed regarding head injuries with loss of consciousness or concussion prior to Parkinson's disease (PD) diagnosis. Logistic regression modeling adjusted for potential confounding variables and tested interaction between Rep1 genotype and head injury. RESULTS: Consistent with prior reports, relative to medium-length Rep1, short Rep1 genotype was associated with reduced PD risk (pooled odds ratio [OR], 0.7; 95% confidence interval [CI], 0.5-0.9), and long Rep1 with increased risk (pooled OR, 1.4; 95% CI, 0.95-2.2). Overall, head injury was not significantly associated with PD (pooled OR, 1.3; 95% CI, 0.9-1.8). However, head injury was strongly associated with PD in those with long Rep1 (FAME OR, 5.4; 95% CI, 1.5-19; SEARCH OR, 2.3; 95% CI, 0.6-9.2; pooled OR, 3.5; 95% CI 1.4-9.2, p-interaction = 0.02). Individuals with both head injury and long Rep1 were diagnosed 4.9 years earlier than those with neither risk factor (p = 0.03). INTERPRETATION: While head injury alone was not associated with PD risk, our data suggest head injury may initiate and/or accelerate neurodegeneration when levels of synuclein are high, as in those with Rep1 expansion. Given the high population frequency of head injury, independent verification of these results is essential.


Assuntos
Traumatismos Craniocerebrais/epidemiologia , Traumatismos Craniocerebrais/genética , Repetições de Microssatélites/genética , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , alfa-Sinucleína/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Traumatismos Craniocerebrais/sangue , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , Doença de Parkinson/diagnóstico , Estudos Prospectivos , alfa-Sinucleína/biossíntese , alfa-Sinucleína/sangue
12.
Neurobiol Dis ; 47(2): 258-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22549133

RESUMO

While studying transgenic mice that overexpress human wildtype alpha-synuclein (Thy1-ASO, ASO) for typical brain alpha-synucleinopathy and central nervous system neuropathology, we observed progressive functional changes in the gastrointestinal and other peripheral organs. A more systematic study revealed that the gastrointestinal tract in ASO mice showed severe distension and blockage of the large intestine by 9-12 months of age. Functional assessments demonstrated a reduction in fecal water content and fecal pellet output, and increased whole gut transit time, in ASO mice compared to wildtype littermates, indicative of constipation, a symptom commonly reported by Parkinson's disease (PD) patients. Food intake was increased and body weight was decreased in 12 month old ASO mice, suggestive of metabolic abnormalities. Post-mortem histological analyses showed that human alpha-synuclein protein was robustly expressed in axonal fibers and in occasional cell bodies of the enteric nervous system, and in the heart of ASO mice. Accumulation of proteinase-K insoluble alpha-synuclein, reminiscent of neurodegenerative processes in PD was also observed. The functional and pathological changes we document here in ASO mice could relate to the autonomic deficits also seen in idiopathic and alpha-synuclein-mediated genetic forms of PD. These experimental data provide a foundation for therapeutic modeling of autonomic changes in PD and related alpha-synucleinopathies.


Assuntos
Doenças do Sistema Nervoso Autônomo/genética , Doenças do Sistema Nervoso Autônomo/metabolismo , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica , Bexiga Urinária/patologia , alfa-Sinucleína/biossíntese , Animais , Doenças do Sistema Nervoso Autônomo/patologia , Trato Gastrointestinal/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Bexiga Urinária/metabolismo , alfa-Sinucleína/genética
13.
Mov Disord ; 27(13): 1652-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23045187

RESUMO

Paraquat is one of the most widely used herbicides worldwide. It produces a Parkinson's disease (PD) model in rodents through redox cycling and oxidative stress (OS) and is associated with PD risk in humans. Glutathione transferases provide cellular protection against OS and could potentially modulate paraquat toxicity. We investigated PD risk associated with paraquat use in individuals with homozygous deletions of the genes encoding glutathione S-transferase M1 (GSTM1) or T1 (GSTT1). Eighty-seven PD subjects and 343 matched controls were recruited from the Agricultural Health Study, a study of licensed pesticide applicators and spouses in Iowa and North Carolina. PD was confirmed by in-person examination. Paraquat use and covariates were determined by interview. We genotyped subjects for homozygous deletions of GSTM1 (GSTM1*0) and GSTT1 (GSTT1*0) and tested interaction between paraquat use and genotype using logistic regression. Two hundred and twenty-three (52%) subjects had GSTM1*0, 95 (22%) had GSTT1*0, and 73 (17%; all men) used paraquat. After adjustment for potential confounders, there was no interaction with GSTM1. In contrast, GSTT1 genotype significantly modified the association between paraquat and PD. In men with functional GSTT1, the odds ratio (OR) for association of PD with paraquat use was 1.5 (95% confidence interval [CI]: 0.6-3.6); in men with GSTT1*0, the OR was 11.1 (95% CI: 3.0-44.6; P interaction: 0.027). Although replication is needed, our results suggest that PD risk from paraquat exposure might be particularly high in individuals lacking GSTT1. GSTT1*0 is common and could potentially identify a large subpopulation at high risk of PD from oxidative stressors such as paraquat.


Assuntos
Suscetibilidade a Doenças/induzido quimicamente , Suscetibilidade a Doenças/epidemiologia , Herbicidas/toxicidade , Exposição Ocupacional , Paraquat/toxicidade , Doença de Parkinson Secundária , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Diagnóstico por Computador , Feminino , Deleção de Genes , Estudos de Associação Genética , Genótipo , Glutationa Transferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/epidemiologia , Doença de Parkinson Secundária/genética , Fatores de Risco , Inquéritos e Questionários
14.
ACS Med Chem Lett ; 13(6): 981-988, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707141

RESUMO

G2019S (GS) is the most prevalent mutation in the leucine rich repeat protein kinase 2 gene (LRRK2), a genetic predisposition that is common for Parkinson's disease, as well as for some forms of cancer, and is a shared risk allele for Crohn's disease. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted LRRK2 kinase, few have reached clinical development. We report the discovery and preliminary development of an entirely novel structural class of potent and selective GS-LRRK2 kinase inhibitors: biaryl-1H-pyrazoles.

15.
Eur J Med Chem ; 242: 114693, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049274

RESUMO

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are genetic predispositions for Parkinson's Disease, of which the G2019S (GS) missense mutation is the most common. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted the LRRK2 kinase, few have reached clinical trials. We recently reported on the discovery of a novel LRRK2 kinase inhibitor chemotype, 1H-pyrazole biaryl sulfonamides. Although both potent and selective GS-LRRK2 inhibitors, 1H-pyrazole biaryl sulfonamides are incapable of crossing the blood-brain barrier. Retaining the core 1H-pyrazole and focusing our efforts on a phenylsulfonamide bioisosteric replacement, we report the discovery and preliminary development of azaspirocyclic 1H-3,4,5-trisubstituted pyrazoles as potent and selective (>2000-fold) GS-LRRK2 kinase inhibitors capable of entering rodent brain. The compounds disclosed here present an excellent starting point for the development of more brain penetrant compounds.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
17.
Mov Disord ; 26(13): 2316-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21953831

RESUMO

The ADAGIO study demonstrated a symptomatic benefit for rasagiline in early Parkinson's disease (PD) and suggested a disease-modifying effect. Evidence indicates that mitochondrial dysfunction plays a role in the pathogenesis of PD and that this may be the site of effect for rasagiline. In this systematic review, evidence for the role of mitochondria in the pathogenesis of PD are reviewed in light of other proposed mechanisms of neuronal degeneration and the actions of rasagiline and its component parts, namely propargylamine and the metabolite, aminoindan. Evidence for the role of mitochondria in the pathogenesis and treatment of PD are reviewed in light of other proposed mechanisms of neuronal degeneration and clinical actions of rasagiline. Monoamine oxidase B (MAO-B) located in the outer mitochondrial membrane controls dopamine metabolism in early PD, and this is the likely location for the symptomatic action of rasagiline. Accumulating evidence indicates that mitochondrial impairment contributes to dopaminergic neuronal loss in PD, either directly or through other mechanisms such as oxidative stress or protein misfolding. Further rasagiline affects numerous mitochondrial mechanisms that prevent apoptotic cell death including prevention of opening of the mitochondrial transition pore, decreased release of cytochrome C, alterations in pro-antiapoptotic genes and proteins, and the nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Thus, the functional neuroprotective actions of rasagiline may not be dependent on MAO-B inhibition, but rather may involve actions of the propargylamine moiety and the aminoindan metabolite. An accumulating body of literature indicates a mitochondrial site of action for rasagiline and highlights the neuroprotective action of the drug, providing strong biological plausibility for disease-modifying effects of the drug such as those observed in ADAGIO.


Assuntos
Indanos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Ensaios Clínicos como Assunto , Humanos , Indanos/uso terapêutico , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia
18.
Biochim Biophys Acta ; 1792(11): 1043-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19733239

RESUMO

The study of mechanisms that underlie Parkinson's disease (PD), as well as translational drug development, has been hindered by the lack of appropriate models. Both cell culture systems and animal models have limitations, and to date none faithfully recapitulate all of the clinical and pathological phenotypes of the disease. In this review we examine the various cell culture model systems of PD, with a focus on different stem cell models that can be used for investigating disease mechanisms as well as drug discovery for PD. We conclude with a discussion of recent discoveries in the field of stem cell biology that have led to the ability to reprogram somatic cells to a pluripotent state via the use of a combination of genetic factors; these reprogrammed cells are termed "induced pluripotent stem cells" (iPSCs). This groundbreaking technique allows for the derivation of patient-specific cell lines from individuals with sporadic forms of PD and also those with known disease-causing mutations. Such cell lines have the potential to serve as a human cellular model of neurodegeneration and PD when differentiated into dopaminergic neurons. The hope is that these iPSC-derived dopaminergic neurons can be used to replicate the key molecular aspects of neural degeneration associated with PD. If so, this approach could lead to transformative new tools for the study of disease mechanisms. In addition, such cell lines can be potentially used for high-throughput drug screening. While not the focus of this review, ultimately it is envisioned that techniques for reprogramming of somatic cells may be optimized to a point sufficient to provide potential new avenues for stem cell-based restorative therapies.


Assuntos
Descoberta de Drogas/métodos , Modelos Biológicos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Linhagem Celular , Humanos
19.
Front Neurol ; 11: 555961, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224084

RESUMO

In an unbiased genome-wide screen for copy number variants (CNVs) on a cohort of Parkinson's disease (PD) patients, we identified in one patient a complex chromosomal rearrangement involving the nucleotide binding protein-like (NUBPL) gene on chromosome 14q12. We noted that mutations in the NUBPL gene had been reported as causing autosomal recessive (AR) mitochondrial Complex I (CI) deficiency in children. The precise breakpoints of the rearrangement in our PD case were found to be identical to those described in a patient with AR CI deficiency who also harbored a second pathogenic mutation in NUBPL. Mitochondrial dysfunction has long been considered a strong contributor to PD, and there is substantial evidence that decreased CI activity plays a central role in PD pathogenesis. We hypothesize that pathogenic NUBPL variants may increase the risk for PD analogous to variants in the glucosylceramidase beta (GBA) gene that increase the risk of developing PD in heterozygous carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA