Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 45(7): 1890-1893, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236025

RESUMO

At the level of peak powers needed for a Kerr-lens mode-locked operation of solid-state soliton short-pulse lasers, a periodic perturbation induced by spatially localized pulse amplification in a laser cavity can induce soliton instability with respect to resonant dispersive-wave radiation, eventually leading to soliton blowup and pulse splitting of the laser output. Here, we present an experimental study of a high-peak-power self-mode-locking Cr:forsterite laser, showing that, despite its complex, explosion-like buildup dynamics, this soliton blowup can be captured and quantitatively characterized via an accurate cavity-dispersion- and gain-resolved analysis of the laser output. We demonstrate that, with a suitable cavity design and finely tailored balance of gain, dispersion, and nonlinearity, such a laser can be operated in a subcritical mode, right beneath the soliton blowup threshold, providing an efficient source of sub-100-fs 15-20 MHz repetition-rate pulses with energies as high as 33 nJ.

2.
J Biophotonics ; 16(12): e202300228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37679905

RESUMO

We demonstrate label-free imaging of genetically induced hepatocellular carcinoma (HCC) in a murine model provided by two- and three-photon fluorescence microscopy of endogenous fluorophores excited at the central wavelengths of 790, 980 and 1250 nm and reinforced by second and third harmonic generation microscopy. We show, that autofluorescence imaging presents abundant information about cell arrangement and lipid accumulation in hepatocytes and hepatic stellate cells (HSCs), harmonics generation microscopy provides a versatile tool for fibrogenesis and steatosis study. Multimodal images may be performed by a single ultrafast laser source at 1250 nm falling in tissue transparency window. Various grades of HCC are examined revealing fibrosis, steatosis, liver cell dysplasia, activation of HSCs and hepatocyte necrosis, that shows a great ability of multimodal label-free microscopy to intravital visualization of liver pathology development.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Hepatócitos , Células Estreladas do Fígado/patologia , Microscopia/métodos
3.
Opt Lett ; 37(9): 1508-10, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22555720

RESUMO

An ultrafast three-dimensional readout of coherent optical-phonon oscillations from a diamond film is demonstrated using temporally and spectrally shaped ultrashort laser pulses, delivered by a compact, oscillator-only laser system. This system integrates a long-cavity ytterbium-fiber-laser-pumped 30 fs Cr:forsterite oscillator with a photonic-crystal-fiber soliton frequency shifter and a periodically poled lithium niobate spectrum compressor, providing coherent Raman excitation and time-delayed interrogation of optical phonons in diamond at a 20 MHz repetition rate with a submicrometer spatial resolution.

4.
Opt Lett ; 37(17): 3618-20, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22940968

RESUMO

Soliton self-frequency shift (SSFS) in a photonic crystal fiber (PCF) pumped by a long-cavity mode-locked Cr:forsterite laser is integrated with second harmonic generation (SHG) in a nonlinear crystal to generate ultrashort light pulses tunable within the range of wavelengths from 680 to 1800 nm at a repetition rate of 20 MHz. The pulse width of the second harmonic output is tuned from 70 to 600 fs by varying the thickness of the nonlinear crystal, beam-focusing geometry, and the wavelength of the soliton PCF output. Wavelength-tunable pulses generated through a combination of SSFS and SHG are ideally suited for coherent Raman microspectroscopy at high repetition rates, as verified by experiments on synthetic diamond and polystyrene films.

5.
J Biophotonics ; 15(10): e202200050, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654757

RESUMO

We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real-time fiber-optic recording of stroke-induced hydrogen peroxide and pH transients in ischemia-affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time-resolved study of oxidative-stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength-multiplex forward-propagation channel for a spatially localized, dual-pathway excitation of genetically encoded fluorescence-protein sensors along with a back-propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber-probe-collected fluorescence return provides means for a high-fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real-time detection of stroke-induced transients and significantly reducing measurement uncertainties in in vivo acute-stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Tecnologia de Fibra Óptica/métodos , Peróxido de Hidrogênio , Optogenética , Ratos
6.
Opt Lett ; 36(10): 1788-90, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593891

RESUMO

Slow-light effects induced by stimulated Raman scattering in polymer waveguides on a printed circuit board are shown to enable a widely tunable delay of broadband optical signals, suggesting an advantageous platform for optical information processing and ultrafast optical waveform transformation.

7.
J Biophotonics ; 14(3): e202000301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205577

RESUMO

We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways-via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain.


Assuntos
Optogenética , Fótons , Encéfalo/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Neuroimagem
8.
J Biophotonics ; 13(3): e201900243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31568649

RESUMO

We demonstrate an accurate quantitative characterization of absolute two- and three-photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high-brightness, cell-specific two- and three-photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two-photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep-tissue experiments.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Fótons , Animais , Encéfalo/diagnóstico por imagem , Neuroimagem , Ratos
9.
J Biophotonics ; 12(11): e201800432, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30891920

RESUMO

Methods of nonlinear optics provide a vast arsenal of tools for label-free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament-protein-antibody staining, subject to limitations and difficulties especially severe in live-brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long-standing challenges in label-free astroglia imaging. We demonstrate that, with a suitable beam-focusing geometry and careful driver-pulse compression, microscopy of second-harmonic generation (SHG) can enable a high-resolution label-free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear-optical imaging of red blood cells based on third-harmonic generation (THG) enhanced by a three-photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high-contrast, high-resolution, stain-free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood-vessel walls and astrocyte-process endfeet on gliovascular interfaces with a spatial resolution within 1 µm at focusing depths up to 20 µm inside a brain.


Assuntos
Astrócitos/citologia , Vasos Sanguíneos/diagnóstico por imagem , Neuroglia/citologia , Dinâmica não Linear , Imagem Óptica/métodos , Animais , Eritrócitos/citologia , Fluorescência , Masculino , Ratos , Ratos Wistar
10.
J Biophotonics ; 12(5): e201800353, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30414251

RESUMO

We present one- and two-photon-absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore-based single-domain near-infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV-based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red-shift tunability of currently available BV-based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two-photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.


Assuntos
Biliverdina/química , Raios Infravermelhos , Proteínas Luminescentes/química , Fótons , Espectrometria de Fluorescência , Razão Sinal-Ruído
11.
Neurosci Lett ; 687: 153-157, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30267850

RESUMO

Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of single neurons using thermosensitive cation channels and IR stimulation. The main advantage of IR stimulation compared to conventional visible light optogenetics is the depth of penetration (up to millimeters). Due to physiological limitations, thermogenetic molecular tools for mammalian brain stimulation remain poorly developed. Here, we tested the possibility of employment of this new technique for stimulation of neocortical neurons. The method is based on activation gating of TRPV1-L channels selectively expressed in specific cells. Pyramidal neurons of layer 2/3 of neocortex were transfected at an embryonic stage using a pCAG expression vector and electroporation in utero. Depolarization and spiking responses of TRPV1L+ pyramidal neurons to IR radiation were recorded electrophysiologically in acute brain slices of adult animals with help of confocal visualization. As TRPV1L-expressing neurons are not sensitive to visible light, there were no limitations of the use of this technique with conventional fluorescence imaging. Our experiments demonstrated that the TRPV1-L+ pyramidal neurons preserve their electrical excitability in acute brain slices, while IR radiation can be successfully used to induce single neuronal depolarization and spiking at near physiological temperatures. Obtained results provide important information for adaptation of thermogenetic technology to mammalian brain studies in vivo.


Assuntos
Potenciais de Ação/fisiologia , Neocórtex/citologia , Células Piramidais/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Linhagem Celular , Estimulação Elétrica/métodos , Técnicas de Patch-Clamp/métodos
12.
Nat Commun ; 8: 15362, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28530239

RESUMO

Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of neurons using thermosensitive transient receptor potential (TRP) cation channels. Broader application of this approach in neuroscience is, however, hindered by a limited variety of suitable ion channels, and by low spatial and temporal resolution of neuronal activation when TRP channels are activated by ambient temperature variations or chemical agonists. Here, we demonstrate rapid, robust and reproducible repeated activation of snake TRPA1 channels heterologously expressed in non-neuronal cells, mouse neurons and zebrafish neurons in vivo by infrared (IR) laser radiation. A fibre-optic probe that integrates a nitrogen-vacancy (NV) diamond quantum sensor with optical and microwave waveguide delivery enables thermometry with single-cell resolution, allowing neurons to be activated by exceptionally mild heating, thus preventing the damaging effects of excessive heat. The neuronal responses to the activation by IR laser radiation are fully characterized using Ca2+ imaging and electrophysiology, providing, for the first time, a complete framework for a thermogenetic manipulation of individual neurons using IR light.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Termogênese , Canais de Potencial de Receptor Transitório/fisiologia , Potenciais de Ação , Animais , Células Cultivadas , Eletrofisiologia/métodos , Células HEK293 , Temperatura Alta , Humanos , Íons , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Micro-Ondas , Serpentes , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA