RESUMO
The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.
Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Aderência Bacteriana/efeitos dos fármacos , Células Epiteliais/microbiologia , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/imunologia , Streptococcus pneumoniae/imunologia , Linhagem Celular , Mapeamento de Epitopos , Humanos , Fatores de Virulência/imunologiaRESUMO
CD8 and CD4 T cell activation are both required for a strong and long-lasting T cell immune response. Endogenously expressed proteins are readily processed by the MHC class I antigen presentation pathway, enabling activation of CD8+ T cells. However, the MHC class II antigen presentation pathway, necessary for CD4+ T cell activation, is generally not sufficiently accessible to endogenously expressed proteins, limiting the efficiency of mRNA- or DNA-based vaccines. In the current study, we have evaluated the feasibility of using antigen sequences fused to sequences derived from the H2-M and H2-O proteins, two complexes known to participate in MHC class II antigen processing, for the enhancement of CD4 T-cell activation. We analyzed T cell activation after genetic immunization with mRNA-encoding fusion proteins with the model antigen ovalbumin and sequences derived from H2-M or H2-O. Our results show that H2-M- or H2-O-derived sequences robustly improve antigen-specific CD4 T-cell activation when fused to the antigen of interest and suggest that the approach could be used to improve the efficiency of mRNA- or DNA-based vaccines.
RESUMO
Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.