Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 27(5): 1147-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18419182

RESUMO

Because Lactuca sativa L. is a plant widely used in ecotoxicological analyses, a study was developed to determine whether the fatty acid composition of lettuce leaves could be used as an additional biomarker of soil contamination by metals such as Pb, Cu, Zn, and Cd. Unlike seed germination or seedling growth, the fatty acid composition of lettuce leaves differed significantly between uncontaminated and field metal-contaminated soils. Hence, this lipid biomarker might provide an early indication of a plant's exposure to metals and the potential bioavailability of metals, and could facilitate or strengthen the diagnosis of soil contamination. Not only is the experimental protocol cheap, rapid, and easy, but the values of the lipid biomarker are highly reproducible when seedlings are grown at the same light intensity. In addition, the values of the biomarker did not vary greatly when 14- to 18-day-old plants were analyzed and when slight differences were introduced in the experimental conditions used to determine the leaf fatty acid composition.


Assuntos
Biomarcadores , Monitoramento Ambiental/métodos , Ácidos Graxos/química , Lactuca/química , Metais/metabolismo , Poluentes do Solo/metabolismo , Disponibilidade Biológica
2.
Methods Mol Biol ; 1635: 57-90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755364

RESUMO

Small hydrophobic membrane proteins or proteins with hydrophobic domains are often difficult to produce in bacteria. The cell-free expression system was found to be a very good alternative for the expression of small hydrophobic subunits of the yeast ATP-synthase, such as subunits e, g, k, i, f and the membrane domain of subunit 4, proteins that are suspected to play a role in the stability of ATP-synthase dimers. All of these proteins could be produced in milligrams amounts using the cell-free "precipitate mode" and were successfully solubilized in the presence of lysolipid 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-1'-rac-glycerol. Purified proteins were also found suitable for structural investigations. An example is given with the NMR backbone assignment of the isotopically labeled subunit g. Protocols are also described for raising specific polyclonal antibodies against overexpressed cell-free proteins.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Sistema Livre de Células , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , ATPases Mitocondriais Próton-Translocadoras/química , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
PLoS One ; 8(10): e75429, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098383

RESUMO

Mitochondrial morphogenesis is a key process of cell physiology. It is essential for the proper function of this double membrane-delimited organelle, as it ensures the packing of the inner membrane in a very ordered pattern called cristae. In yeast, the mitochondrial ATP synthase is able to form dimers that can assemble into oligomers. Two subunits (e and g) are involved in this supramolecular organization. Deletion of the genes encoding these subunits has no effect on the ATP synthase monomer assembly or activity and only affects its dimerization and oligomerization. Concomitantly, the absence of subunits e and g and thus, of ATP synthase supercomplexes, promotes the modification of mitochondrial ultrastructure suggesting that ATP synthase oligomerization is involved in cristae morphogenesis. We report here that in mammalian cells in culture, the shRNA-mediated down-regulation of subunits e and g affects the stability of ATP synthase and results in a 50% decrease of the available functional enzyme. Comparable to what was shown in yeast, when subunits e and g expression are repressed, ATP synthase dimers and oligomers are less abundant when assayed by native electrophoresis. Unexpectedly, mammalian ATP synthase dimerization/oligomerization impairment has functional consequences on the respiratory chain leading to a decrease in OXPHOS activity. Finally these structural and functional alterations of the ATP synthase have a strong impact on the organelle itself leading to the fission of the mitochondrial network and the disorganization of mitochondrial ultrastructure. Unlike what was shown in yeast, the impairment of the ATP synthase oligomerization process drastically affects mitochondrial ATP production. Thus we propose that mutations or deletions of genes encoding subunits e and g may have physiopathological implications.


Assuntos
Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Sequência de Aminoácidos , Células HEK293 , Células HeLa , Humanos , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos
4.
Int J Biochem Cell Biol ; 45(1): 99-105, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22664329

RESUMO

Mitochondrial F(1)F(o) ATP synthase is an enzymatic complex involved in the aerobic synthesis of ATP. It is well known that several enzymes are organized in supramolecular complexes in the inner mitochondrial membrane. The ATP synthase supramolecular assembly is mediated through two interfaces. One leads to dimer formation and the other to oligomer formation. In yeast, the presence of ATP synthase oligomers has been described as essential to the maintenance of the mitochondrial cristae ultrastructure. Indeed, the destabilization of the interactions between monomers was shown to alter the organization of the inner mitochondrial membrane, leading to the formation of onion-like structures similar to those observed in some mitochondrial pathologies. By using information obtained this decade (structure modeling, electron microscopy and cross-linking), this paper (i) reviews the actual state of the art and (ii) proposes a topological model of the transmembrane domains and interfaces of the ATP synthase's tetramer. This review also discusses the physiological role of this oligomerization process and its potential implications in mammal pathology. This article is part of a Directed Issue entitled: Bioenergetic Dysfunction, adaptation and therapy.


Assuntos
Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Dimerização , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA