Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1334-1341, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297688

RESUMO

2 µm photonics and optoelectronics is promising for potential applications such as optical communications, LiDAR, and chemical sensing. While the research on 2 µm detectors is on the rise, the development of InP-based 2 µm gain materials with 0D nanostructures is rather stalled. Here, we demonstrate low-threshold, continuous wave lasing at 2 µm wavelength from InAs quantum dash/InP lasers enabled by punctuated growth of the quantum structure. We demonstrate low threshold current densities from the 7.1 µm width ridge-waveguide lasers, with values of 657, 1183, and 1944 A/cm2 under short pulse wave (SPW), quasi-continuous wave (QCW), and continuous wave operation. The lasers also exhibited good thermal stability, with a characteristic temperature T0 of 43 K under SPW mode. The lasing spectra is centered at 1.97 µm, coinciding with the ground-state emission observed from photoluminescence studies. We believe that the InAs quantum dash/InP lasers emitting near 2 µm will be a key enabling technology for 2 µm communication and sensing.

2.
Nano Lett ; 23(8): 3344-3351, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37027572

RESUMO

Fabrication of high quantum efficiency nanoscale device is challenging due to increased carrier loss at surface. Low dimensional materials such 0D quantum dots and 2D materials have been widely studied to mitigate the loss. Here, we demonstrate a strong photoluminescence enhancement from graphene/III-V quantum dot mixed-dimensional heterostructures. The distance between graphene and quantum dots in the 2D/0D hybrid structure determines the degree of radiative carrier recombination enhancement from 80% to 800% compared to the quantum dot only structure. Time-resolved photoluminescence decay also shows increased carrier lifetimes when the distance decreases from 50 to 10 nm. We propose that the optical enhancement is due to energy band bending and hole carrier transfer, which repair the imbalance of electron and hole carrier densities in quantum dots. This 2D graphene/0D quantum dot heterostructure shows promise for high performance nanoscale optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 16(23): 30209-30217, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828941

RESUMO

Monolithic integration of III-V quantum dot (QD) lasers onto a Si substrate is a scalable and reliable approach for obtaining highly efficient light sources for Si photonics. Recently, a combination of optimized GaAs buffers and QD gain materials resulted in monolithically integrated butt-coupled lasers on Si. However, the use of thick GaAs buffers up to 3 µm not only hinders accurate vertical alignment to the Si optical waveguide but also imposes considerable growth costs and time constraints. Here, for the first time, we demonstrate InAs QD lasers epitaxially grown on a 700 nm thick GaAs/Si template, which is approximately four times thinner than the conventional III-V buffers on Si. The optimized 700 nm GaAs buffer yields a remarkably smooth surface and low threading dislocation density of 4 × 108 cm-2, which is sufficient for QD laser growth. The InAs QD lasers fabricated on these ultrathin templates still lase at room temperature with a threshold current density of 661 A/cm2 and a characteristic temperature of 50 K. We believe that these results are important for the monolithically integrated III-V QD lasers for Si photonics applications.

4.
Materials (Basel) ; 14(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562047

RESUMO

The volumetric growth, composition, and morphology of porous alumina films fabricated by reduced temperature 280 K galvanostatic anodizing of aluminum foil in 0.4, 1.0, and 2.0 M aqueous sulfuric acid with 0.5-10 mA·cm-2 current densities were investigated. It appeared that an increase in the solution concentration from 0.4 to 2 M has no significant effect on the anodizing rate, but leads to an increase in the porous alumina film growth. The volumetric growth coefficient increases from 1.26 to 1.67 with increasing current density from 0.5 to 10 mA·cm-2 and decreases with increasing solution concentration from 0.4 to 2.0 M. In addition, in the anodized samples, metallic aluminum phases are identified, and a tendency towards a decrease in the aluminum content with an increase in solution concentration is observed. Anodizing at 0.5 mA·cm-2 in 2.0 M sulfuric acid leads to formation of a non-typical nanostructured porous alumina film, consisting of ordered hemispheres containing radially diverging pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA