Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Breast Cancer Res Treat ; 185(3): 583-590, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33113089

RESUMO

BACKGROUND: Diagnostic screening for pathogenic variants in breast cancer susceptibility genes, including BRCA1, BRCA2, PALB2, PTEN and TP53, may be offered to New Zealanders from suspected high-risk breast (and ovarian) cancer families. However, it is unknown how many high-risk pathogenic variant carriers in New Zealand are not offered genetic screening using existing triage tools and guidelines for breast (and ovarian) cancer patients. METHODS: Panel-gene sequencing of the coding and non-coding regions of the BRCA1 and BRCA2 genes, and the coding regions and splice sites of CDH1, PALB2, PTEN and TP53, was undertaken for an unselected cohort of 367 female breast cancer patients. A total of 1685 variants were evaluated using the ENIGMA and the ACMG/AMP variant classification guidelines. RESULTS: Our study identified that 13 (3.5%) breast cancer patients carried a pathogenic or likely pathogenic variant in BRCA1, BRCA2, PALB2, or PTEN. A significantly higher number of pathogenic variant carriers had grade 3 tumours (10/13) when compared to non-carriers; however, no other clinicopathological characteristics were found to be significantly different between (likely) pathogenic variant carriers and non-carriers, nor between variant of unknown significance carriers and non-carriers. Notably, 46% of the identified (likely) pathogenic variant carriers had not been referred for a genetic assessment and consideration of genetic testing. CONCLUSION: Our study shows a potential under-ascertainment of women carrying a (likely) pathogenic variant in a high-risk breast cancer susceptibility gene. These results suggest that further research into testing pathways for New Zealand breast cancer patients may be required to reduce the impact of hereditary cancer syndromes for these individuals and their families.


Assuntos
Neoplasias da Mama , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Nova Zelândia/epidemiologia
2.
J Med Genet ; 56(7): 453-460, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30890586

RESUMO

BACKGROUND: PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS: Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS: We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS: PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.


Assuntos
Processamento Alternativo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Alelos , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Mutação em Linhagem Germinativa , Humanos , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Degradação do RNAm Mediada por Códon sem Sentido , Sítios de Splice de RNA
3.
Int J Cancer ; 145(2): 401-414, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30623411

RESUMO

A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Splicing de RNA , Análise de Sequência de RNA/métodos , Proteína BRCA1/genética , Proteína BRCA2/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Eletroforese Capilar , Feminino , Predisposição Genética para Doença , Humanos , Mutação
4.
Int J Mol Sci ; 20(3)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736279

RESUMO

BRCA1 and BRCA2 spliceogenic variants are often associated with an elevated risk of breast and ovarian cancers. Analyses of BRCA1 and BRCA2 splicing patterns have traditionally used technologies that sample a population of cells but do not account for the variation that may be present between individual cells. This novel proof of concept study utilises RNA in situ hybridisation to measure the absolute expression of BRCA1 and BRCA2 mRNA splicing events in single lymphoblastoid cells containing known spliceogenic variants (BRCA1c.671-2 A>G or BRCA2c.7988 A>T). We observed a large proportion of cells (>42%) in each sample that did not express mRNA for the targeted gene. Increased levels (average mRNA molecules per cell) of BRCA2 ∆17_18 were observed in the cells containing the known spliceogenic variant BRCA2c.7988 A>T, but cells containing BRCA1c.671-2 A>G were not found to express significantly increased levels of BRCA1 ∆11, as had been shown previously. Instead, we show for each variant carrier sample that a higher proportion of cells expressed the targeted splicing event compared to control cells. These results indicate that BRCA1/2 mRNA is expressed stochastically, suggesting that previously reported results using RT-PCR may have been influenced by the number of cells with BRCA1/2 mRNA expression and may not represent an elevation of constitutive mRNA expression. Detection of mRNA expression in single cells allows for a more comprehensive understanding of how spliceogenic variants influence the expression of mRNA isoforms. However, further research is required to assess the utility of this technology to measure the expression of predicted spliceogenic BRCA1 and BRCA2 variants in a diagnostic setting.


Assuntos
Processamento Alternativo , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , RNA Mensageiro , Alelos , Linhagem Celular Tumoral , Feminino , Genótipo , Humanos , Análise de Célula Única
5.
Hum Mol Genet ; 25(11): 2256-2268, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27008870

RESUMO

A recent analysis using family history weighting and co-observation classification modeling indicated that BRCA1 c.594-2A > C (IVS9-2A > C), previously described to cause exon 10 skipping (a truncating alteration), displays characteristics inconsistent with those of a high risk pathogenic BRCA1 variant. We used large-scale genetic and clinical resources from the ENIGMA, CIMBA and BCAC consortia to assess pathogenicity of c.594-2A > C. The combined odds for causality considering case-control, segregation and breast tumor pathology information was 3.23 × 10-8 Our data indicate that c.594-2A > C is always in cis with c.641A > G. The spliceogenic effect of c.[594-2A > C;641A > G] was characterized using RNA analysis of human samples and splicing minigenes. As expected, c.[594-2A > C; 641A > G] caused exon 10 skipping, albeit not due to c.594-2A > C impairing the acceptor site but rather by c.641A > G modifying exon 10 splicing regulatory element(s). Multiple blood-based RNA assays indicated that the variant allele did not produce detectable levels of full-length transcripts, with a per allele BRCA1 expression profile composed of ≈70-80% truncating transcripts, and ≈20-30% of in-frame Δ9,10 transcripts predicted to encode a BRCA1 protein with tumor suppression function.We confirm that BRCA1c.[594-2A > C;641A > G] should not be considered a high-risk pathogenic variant. Importantly, results from our detailed mRNA analysis suggest that BRCA-associated cancer risk is likely not markedly increased for individuals who carry a truncating variant in BRCA1 exons 9 or 10, or any other BRCA1 allele that permits 20-30% of tumor suppressor function. More generally, our findings highlight the importance of assessing naturally occurring alternative splicing for clinical evaluation of variants in disease-causing genes.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Mutação/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Análise Mutacional de DNA , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Sítios de Splice de RNA/genética , Splicing de RNA/genética
6.
Breast Cancer Res ; 19(1): 127, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183387

RESUMO

BACKGROUND: Laboratory assays evaluating the effect of DNA sequence variants on BRCA1 mRNA splicing may contribute to classification by providing molecular evidence. However, our knowledge of normal and aberrant BRCA1 splicing events to date has been limited to data derived from assays targeting partial transcript sequences. This study explored the utility of nanopore sequencing to examine whole BRCA1 mRNA transcripts and to provide accurate categorisation of in-frame and out-of-frame splicing events. METHODS: The exon structure of BRCA1 transcripts from a previously studied control lymphoblastoid cell line were assessed using MinION nanopore sequencing of long-range reverse transcriptase-PCR amplicons. RESULTS: Our study identified and characterised 32 complete BRCA1 isoforms, including 18 novel isoforms which showed skipping of multiple contiguous and/or non-contiguous exons. Furthermore, we show that known BRCA1 exon skipping events, such as Δ(9,10) and Δ21, can co-occur in a single transcript, with some isoforms containing four or more alternative splice junctions. Fourteen novel isoforms were formed entirely from a combination of previously identified alternative splice junctions, suggesting that the total number of BRCA1 isoforms might be lower than the number of splicing events reported previously. CONCLUSIONS: Our results highlight complexity in BRCA1 transcript structure that has not been described previously. This finding has key implications for predicting the translation frame of splicing transcripts, important for interpreting the clinical significance of spliceogenic variants. Future research is warranted to quantitatively assess full-length BRCA1 transcript levels, and to assess the application of nanopore sequencing for routine evaluation of potential spliceogenic variants.


Assuntos
Processamento Alternativo , Éxons , Genes BRCA1 , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA Complementar/química , DNA Complementar/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Degradação do RNAm Mediada por Códon sem Sentido
7.
Clin Chem ; 60(2): 341-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24212087

RESUMO

BACKGROUND: Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting. METHODS: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501+3A>T). Differences in protocols were then assessed to determine which elements were critical in reliable assay design. RESULTS: PCR primer design strategies, PCR conditions, and product detection methods, combined with a prior knowledge of expected alternative transcripts, were the key factors for accurate splicing assay results. For example, because of the position of primers and PCR extension times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., BRCA2 c.8632+1G>A Δ19,20 and BRCA1 c.135-1G>T Δ5q and Δ3). Detection of low-abundance transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., BRCA2 c.426-12_8delGTTTT ins18bp). CONCLUSIONS: We provide recommendations for best practice and raise key issues to consider when designing mRNA assays for evaluation of unclassified sequence variants.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Testes Genéticos/métodos , Testes Genéticos/normas , Laboratórios/normas , Splicing de RNA , Predisposição Genética para Doença , Humanos , Análise Multivariada , Guias de Prática Clínica como Assunto , Sítios de Splice de RNA , Sensibilidade e Especificidade
8.
Front Genet ; 10: 1139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803232

RESUMO

Introduction: Case-control analyses have shown BARD1 variants to be associated with up to >2-fold increase in risk of breast cancer, and potentially greater risk of triple negative breast cancer. BARD1 is included in several gene sequencing panels currently marketed for the prediction of risk of cancer, however there are no gene-specific guidelines for the classification of BARD1 variants. We present the most comprehensive assessment of BARD1 messenger RNA splicing, and demonstrate the application of these data for the classification of truncating and splice site variants according to American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines. Methods: Nanopore sequencing, short-read RNA-seq (whole transcriptome and targeted), and capillary electrophoresis analysis were performed by four laboratories to investigate alternative BARD1 splicing in blood, breast, and fimbriae/ovary related specimens from non-cancer affected tissues. Splicing data were also collated from published studies of nine different tissues. The impact of the findings for PVS1 annotation was assessed for truncating and splice site variants. Results: We identified 62 naturally occurring alternative spliced BARD1 splicing events, including 19 novel events found by next generation sequencing and/or reverse transcription PCR analysis performed for this study. Quantitative analysis showed that naturally occurring splicing events causing loss of clinically relevant domains or nonsense mediated decay can constitute up to 11.9% of overlapping natural junctions, suggesting that aberrant splicing can be tolerated up to this level. Nanopore sequencing of whole BARD1 transcripts characterized 16 alternative isoforms from healthy controls, revealing that the most complex transcripts combined only two alternative splicing events. Bioinformatic analysis of ClinVar submitted variants at or near BARD1 splice sites suggest that all consensus splice site variants in BARD1 should be considered likely pathogenic, with the possible exception of variants at the donor site of exon 5. Conclusions: No BARD1 candidate rescue transcripts were identified in this study, indicating that all premature translation-termination codons variants can be annotated as PVS1. Furthermore, our analysis suggests that all donor and acceptor (IVS+/-1,2) variants can be considered PVS1 or PVS1_strong, with the exception of variants targeting the exon 5 donor site, that we recommend considering as PVS1_moderate.

9.
Front Oncol ; 8: 140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774201

RESUMO

PCR-based RNA splicing assays are commonly used in diagnostic and research settings to assess the potential effects of variants of uncertain clinical significance in BRCA1 and BRCA2. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium completed a multicentre investigation to evaluate differences in assay design and the integrity of published data, raising a number of methodological questions associated with cell culture conditions and PCR-based protocols. We utilized targeted RNA-seq to re-assess BRCA1 and BRCA2 mRNA isoform expression patterns in lymphoblastoid cell lines (LCLs) previously used in the multicentre ENIGMA study. Capture of the targeted cDNA sequences was carried out using 34 BRCA1 and 28 BRCA2 oligonucleotides from the Illumina Truseq Targeted RNA Expression platform. Our results show that targeted RNA-seq analysis of LCLs overcomes many of the methodology limitations associated with PCR-based assays leading us to make the following observations and recommendations: (1) technical replicates (n > 2) of variant carriers to capture methodology induced variability associated with RNA-seq assays, (2) LCLs can undergo multiple freeze/thaw cycles and can be cultured up to 2 weeks without noticeably influencing isoform expression levels, (3) nonsense-mediated decay inhibitors are essential prior to splicing assays for comprehensive mRNA isoform detection, (4) quantitative assessment of exon:exon junction levels across BRCA1 and BRCA2 can help distinguish between normal and aberrant isoform expression patterns. Experimentally derived recommendations from this study will facilitate the application of targeted RNA-seq platforms for the quantitation of BRCA1 and BRCA2 mRNA aberrations associated with sequence variants of uncertain clinical significance.

10.
N Z Med J ; 128(1419): 56-61, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26365847

RESUMO

Many BRCA1 and BRCA2 genetic mutations are known to result in an elevated breast cancer risk. Routine BRCA1/2 gene screening is offered to patients thought to have an increased risk of carrying a deleterious mutation. 5-10% of genetic tests identify a variant of unknown clinical significance (VUCS), creating significant challenges to health care providers. Recent advances in sequencing technologies allow more genes to be screened in an increasing number of individuals and at an ever decreasing cost. Significantly more VUCS will be identified, adding to the uncertainty of how to manage these patients. The addition of splicing assays to current variant classification tools may be instrumental towards understanding the disease risk of these variants and improve the reliability of these assays.


Assuntos
Neoplasias da Mama , Genes BRCA1/fisiologia , Genes BRCA2/fisiologia , Testes Genéticos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Testes Genéticos/métodos , Testes Genéticos/normas , Variação Genética , Humanos , Mutação , Nova Zelândia , Melhoria de Qualidade , Reprodutibilidade dos Testes , Medição de Risco/métodos , Medição de Risco/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA