Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cell ; 43(5): 703-12, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884973

RESUMO

The COP10-DET1-DDB1 (CDD) complex is an evolutionarily conserved protein complex discovered for its role in the repression of photomorphogenesis in Arabidopsis. It is important in many cellular and developmental processes in both plants and animals, but its molecular mode of action remains poorly understood. Here, we show that the CDD component DET1 possesses transcriptional repression activity and physically interacts with two closely related MYB transcription factors, CCA1 and LHY, which are core components of the plant circadian clock. DET1 associates with the promoter of CCA1/LHY target genes, such as TOC1, in a CCA1/LHY-dependent manner and is required for their repression, suggesting a recruitment of DET1 by the central oscillator components to regulate the clock. Our results reveal DET1 as a core transcriptional repression factor important for clock progression. Overall, the CDD complex may function as a transcriptional corepressor in diverse processes through direct interaction with distinct transcription factors.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Arabidopsis/metabolismo , Relógios Circadianos , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
2.
Plant J ; 84(2): 443-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332947

RESUMO

Cell type-specific transcriptional regulators play critical roles in the generation and maintenance of multicellularity. As they are often expressed at low levels, in vivo DNA-binding studies of these regulators by standard chromatin immunoprecipitation (ChIP) assays are technically challenging. We describe here an optimized ChIP protocol termed Maximized Objects for Better Enrichment (MOBE)-ChIP, which enhances the sensitivity of ChIP assays for detecting cell type-specific signals. The protocol, which is based on the disproportional increase of target signals over background at higher scales, uses substantially greater volume of starting materials than conventional ChIPs to achieve high signal enrichment. This technique can capture weak binding events that are ambiguous in standard ChIP assays, and is useful both in gene-specific and whole-genome analysis. This protocol has been optimized for Arabidopsis, but should be applicable to other model systems with minor modifications. The full procedure can be completed within 3 days.


Assuntos
Imunoprecipitação da Cromatina/métodos , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(41): 16669-74, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24067658

RESUMO

The evolutionarily conserved constitutive photomorphogenesis 1 (COP1) is a RING and WD40 protein that functions as a substrate receptor of CULLIN4-damaged DNA binding protein 1 (CUL4-DDB1)-based E3 ubiquitin ligases in both plants and animals. In Arabidopsis, COP1 is a central repressor of photomorphogenesis in the form of COP1-suppressor of PHYA (SPA) complex(es). CUL4-DDB1-COP1-SPA suppresses the photomorphogenic program by targeting the transcription factor elongated hypocotyl 5 for degradation. Intriguingly, under photomorphogenic UV-B light, COP1 reverses its repressive role and promotes photomorphogenesis. However, the mechanism by which COP1 is functionally switched is still obscure. Here, we demonstrate that UV-B triggers the physical and functional disassociation of the COP1-SPA core complex(es) from CUL4-DDB1 and the formation of a unique complex(es) containing the UV-B receptor UV resistance locus 8 (UVR8). The establishment of this UV-B-dependent COP1 complex(es) is associated with its positive modulation of elongated hypocotyl 5 stability and activity, which sheds light on the mechanism of COP1's promotive action in UV-B-induced photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transdução de Sinal Luminoso/fisiologia , Complexos Multiproteicos/metabolismo , Desenvolvimento Vegetal/fisiologia , Raios Ultravioleta , Arabidopsis , Proteínas de Arabidopsis/efeitos da radiação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Immunoblotting , Imunoprecipitação , Complexos Multiproteicos/efeitos da radiação , Proteínas Nucleares/metabolismo , Desenvolvimento Vegetal/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo
5.
Development ; 139(20): 3683-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22991435

RESUMO

The plant stomatal lineage manifests features common to many developmental contexts: precursor cells are chosen from an initially equivalent field of cells, undergo asymmetric and self-renewing divisions, communicate among themselves and respond to information from a distance. As we review here, the experimental accessibility of these epidermal lineages, particularly in Arabidopsis, has made stomata a conceptual and technical framework for the study of cell fate, stem cells, and cell polarity in plants.


Assuntos
Comunicação Celular , Polaridade Celular , Desenvolvimento Vegetal , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases
6.
Plant Cell ; 24(11): 4590-606, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23150635

RESUMO

As sessile organisms, higher plants have evolved the capacity to sense and interpret diverse light signals to modulate their development. In Arabidopsis thaliana, low-intensity and long-wavelength UV-B light is perceived as an informational signal to mediate UV-B-induced photomorphogenesis. Here, we report that the multifunctional E3 ubiquitin ligase, CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1), a known key player in UV-B photomorphogenic responses, is also a UV-B-inducible gene. Two transcription factors, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and ELONGATED HYPOCOTYL5 (HY5), directly bind to distinct regulatory elements within the COP1 promoter, which are essential for the induction of the COP1 gene mediated by photomorphogenic UV-B signaling. Absence of FHY3 results in impaired UV-B-induced hypocotyl growth and reduced tolerance against damaging UV-B. Thus, FHY3 positively regulates UV-B-induced photomorphogenesis by directly activating COP1 transcription, while HY5 promotes COP1 expression via a positive feedback loop. Furthermore, FHY3 and HY5 physically interact with each other, and this interaction is diminished by UV-B. Together, our findings reveal that COP1 gene expression in response to photomorphogenic UV-B is controlled by a combinatorial regulation of FHY3 and HY5, and this UV-B-specific working mode of FHY3 and HY5 is distinct from that in far-red light and circadian conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Raios Ultravioleta , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos , Fenótipo , Fitocromo/genética , Fitocromo/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação , Deleção de Sequência , Transdução de Sinais , Fatores de Tempo , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Methods Mol Biol ; 2795: 65-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594528

RESUMO

The production of stomata, the epidermal pores of plants, is influenced by diverse environmental signals including high temperature. To assess its impact on stomatal formation, researchers need to grow plants in a carefully designed regime under controlled conditions and capture clear, microscopic views of the epidermis. Here, we describe a procedure to study the effect of high temperature on stomatal formation. This method can generate high-quality epidermal images of cotyledons, leaves, and hypocotyl of young Arabidopsis seedlings, which allow the determination of the pattern, density, and index of stomata on these tissues. Besides temperature, the protocol can serve as a general approach to examine stomatal phenotype and the effect of other external signals on stomatal formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/genética , Temperatura , Arabidopsis/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Plant Cell ; 22(1): 108-23, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20061554

RESUMO

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) possesses E3 ligase activity and promotes degradation of key factors involved in the light regulation of plant development. The finding that CULLIN4 (CUL4)-Damaged DNA Binding Protein1 (DDB1) interacts with DDB1 binding WD40 (DWD) proteins to act as E3 ligases implied that CUL4-DDB1 may associate with COP1-SUPPRESSOR OF PHYA (SPA) protein complexes, since COP1 and SPAs are DWD proteins. Here, we demonstrate that CUL4-DDB1 physically associates with COP1-SPA complexes in vitro and in vivo, likely via direct interaction of DDB1 with COP1 and SPAs. The interactions between DDB1 and COP1, SPA1, and SPA3 were disrupted by mutations in the WDXR motifs of MBP-COP1, His-SPA1, and His-SPA3. CUL4 cosuppression mutants enhanced weak cop1 photomorphogenesis and flowered early under short days. Early flowering of short day-grown cul4 mutants correlated with increased FLOWERING LOCUS T transcript levels, whereas CONSTANS transcript levels were not altered. De-etiolated1 and COP1 can bind DDB1 and may work with CUL4-DDB1 in distinct complexes, but they mediate photomorphogenesis in concert. Thus, a series of CUL4-DDB1-COP1-SPA E3 ligase complexes may mediate the repression of photomorphogenesis and, possibly, of flowering time.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Flores/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Ubiquitina-Proteína Ligases/genética
9.
Sci Adv ; 8(40): eadd2063, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206348

RESUMO

Stomata, the epidermal pores for gas exchange between plants and the atmosphere, are the major sites of water loss. During water shortage, plants limit the formation of new stoma via the phytohormone abscisic acid (ABA) to conserve water. However, how ABA suppresses stomatal production is largely unknown. Here, we demonstrate that three core SnRK2 kinases of ABA signaling inhibit the initiation and proliferation of the stomatal precursors in Arabidopsis. We show that the SnRK2s function within the precursors and directly phosphorylate SPEECHLESS (SPCH), the master transcription factor for stomatal initiation. We identify specific SPCH residues targeted by the SnRK2s, which mediate the ABA/drought-induced suppression of SPCH and stomatal production. This SnRK2-specific SPCH phosphocode connects stomatal development with ABA/drought signals and enables the independent control of this key water conservation response. Our work also highlights how distinct signaling activities can be specifically encoded on a master regulator to modulate developmental plasticity.

10.
Nat Commun ; 12(1): 3403, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099707

RESUMO

Developmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata-essential pores for gas exchange in plants-is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Desenvolvimento Vegetal/genética , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Hipocótilo/metabolismo , Células do Mesofilo/metabolismo , Comunicação Parácrina/genética , Comunicação Parácrina/efeitos da radiação , Desenvolvimento Vegetal/efeitos da radiação , Epiderme Vegetal/metabolismo , Estômatos de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , Estabilidade Proteica/efeitos da radiação
11.
Dev Cell ; 56(23): 3185-3191, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875224

RESUMO

In our 20th anniversary year, we reflect on how fields have changed since our first issue and here look to the future. In this collection of Voices, our writers speculate on the future: in terms of philosophy, cell states, cell processes, and then how to model cell systems.


Assuntos
Biologia Celular , Biologia do Desenvolvimento , Publicações Periódicas como Assunto/estatística & dados numéricos , Humanos , Fatores de Tempo
12.
Plant Biotechnol J ; 8(9): 994-1004, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20444208

RESUMO

Malaria is widely associated with poverty, and a low-cost vaccine against malaria is highly desirable for implementing comprehensive vaccination programmes in developing countries. Production of malaria antigens in plants is a promising approach, but its development has been hindered by poor expression of the antigens in plant cells. In the present study, we targeted plant seeds as a low-cost vaccine production platform and successfully expressed the Plasmodium falciparum 42-kDa fragment of merozoite surface protein 1 (MSP142), a leading malaria vaccine candidate, at a high level in transgenic Arabidopsis seeds. We overcame hurdles of transcript and protein instabilities of MSP142 in plants by synthesizing a plant-optimized MSP142 cDNA and either targeting the recombinant protein to protein storage vacuoles or fusing it with a stable plant storage protein. An exceptional improvement in MSP142 expression, from an undetectable level to 5% of total extractable protein, was achieved with these combined strategies. Importantly, the plant-derived MSP142 maintains its natural antigenicity and can be recognized by immune sera from malaria-infected patients. Our results provide a strong basis for the development of a plant-based, low-cost malaria vaccine.


Assuntos
Arabidopsis/metabolismo , Vacinas Antimaláricas/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Sementes/metabolismo , Animais , Arabidopsis/genética , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Sementes/genética
13.
Mol Cell Biol ; 27(13): 4708-19, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452440

RESUMO

DET1 (de-etiolated 1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis thaliana CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Human DET1 has recently been isolated as one of the DDB1- and Cul4A-associated factors, along with an array of WD40-containing substrate receptors of the Cul4A-DDB1 ubiquitin ligase. However, DET1 differs from conventional substrate receptors of cullin E3 ligases in both biochemical behavior and activity. Here we report that mammalian DET1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 associated 1), and a member of the UBE2E group of canonical ubiquitin-conjugating enzymes. DDD-E2 complexes interact with multiple ubiquitin E3 ligases. We show that the E2 component cannot maintain the ubiquitin thioester linkage once bound to the DDD core, rendering mammalian DDD-E2 equivalent to the Arabidopsis CDD complex. While free UBE2E-3 is active and able to enhance UbcH5/Cul4A activity, the DDD core specifically inhibits Cul4A-dependent polyubiquitin chain assembly in vitro. Overexpression of DET1 inhibits UV-induced CDT1 degradation in cultured cells. These findings demonstrate that the conserved DET1 complex modulates Cul4A functions by a novel mechanism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Subunidades Proteicas/metabolismo , Especificidade por Substrato/efeitos da radiação , Termodinâmica , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Raios Ultravioleta
14.
Biochem J ; 418(3): 683-90, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19061479

RESUMO

Arabidopsis thaliana COP10 (constitutive photomorphogenic 10) is a UEV [Ub (ubiquitin)-conjugating enzyme (E2) variant protein] that is required for repression of seedling photomorphogenesis in darkness. COP10 forms a complex {the CDD complex [COP10-DET1 (de-etiolated 1)-DDB1 (DNA damage binding protein 1) complex]} with DET1 and DDB1a in vivo and can enhance the activity of Ub-conjugating enzyme (E2) in vitro. To investigate whether COP10 might act as a general regulator of E2s, we tested the specificity of COP10 E2 enhancement activity across E2 families of Arabidopsis. We found that COP10 is capable of enhancing members of four E2 subgroups significantly, while having a milder effect on another. Surprisingly, we found that close canonical E2 homologues of COP10, such as UbcH5a (human ubiquitin-conjugating enzyme 5), are also capable of enhancing E2s. Furthermore, we detected direct interactions between COP10 and three of the enhanced E2s, hinting at a possible mechanism for the enhancements. The present study suggests that some E2s, including the generic Ubc4/5p families involved in many processes, might possess dual activities: the formation of the classic E2-Ub thiol ester and the previously unknown E2 enhancement activity. Therefore COP10, despite being a catalytically inactive E2, might still enhance a variety of E2s and regulate numerous aspects of plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Escherichia coli/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
15.
Nat Commun ; 11(1): 4214, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843632

RESUMO

Stomata are epidermal structures that modulate gas exchanges between plants and the atmosphere. The formation of stomata is regulated by multiple developmental and environmental signals, but how these signals are coordinated to control this process remains unclear. Here, we showed that the conserved energy sensor kinase SnRK1 promotes stomatal development under short-day photoperiod or in liquid culture conditions. Mutation of KIN10, the catalytic α-subunit of SnRK1, results in the decreased stomatal index; while overexpression of KIN10 significantly induces stomatal development. KIN10 displays the cell-type-specific subcellular location pattern. The nuclear-localized KIN10 proteins are highly enriched in the stomatal lineage cells to phosphorylate and stabilize SPEECHLESS, a master regulator of stomatal formation, thereby promoting stomatal development. Our work identifies a module links connecting the energy signaling and stomatal development and reveals that multiple regulatory mechanisms are in place for SnRK1 to modulate stomatal development in response to changing environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estômatos de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Fosforilação , Fotoperíodo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
16.
Methods Mol Biol ; 1689: 167-176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29027174

RESUMO

In multicellular organisms, the initiation and maintenance of specific cell types often require the activity of cell type-specific transcriptional regulators. Understanding their roles in gene regulation is crucial but probing their DNA targets in vivo, especially in a genome-wide manner, remains a technical challenge with their limited expression. To improve the sensitivity of chromatin immunoprecipitation (ChIP) for detecting the cell type-specific signals, we have developed the Maximized Objects for Better Enrichment (MOBE)-ChIP, where ChIP is performed at a substantially larger experimental scale and under low background conditions. Here, we describe the procedure in the study of transcription factors in the model plant Arabidopsis. However, with some modifications, the technique should also be implemented in other systems. Besides cell type-specific studies, MOBE-ChIP can also be used as a general strategy to improve ChIP signals.


Assuntos
Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , DNA/genética , DNA/metabolismo , DNA de Plantas , Proteínas de Ligação a DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Especificidade de Órgãos/genética , Plantas/genética , Plantas/metabolismo , Ligação Proteica , Transcrição Gênica
17.
Curr Biol ; 28(8): 1273-1280.e3, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29628371

RESUMO

Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica de Plantas/genética , Temperatura Alta , Fitocromo/metabolismo , Desenvolvimento Vegetal , Estômatos de Plantas/fisiologia , Transdução de Sinais , Temperatura , Fatores de Transcrição/metabolismo
18.
Methods Mol Biol ; 1629: 37-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28623578

RESUMO

The generation of diverse cell types in multicellular organisms often requires the activity of cell-type-specific transcription factors. Understanding where these transcription factors bind in controlling specific cellular programs is critical. However, probing these cell-type-specific factors in vivo with standard chromatin immunoprecipitation (ChIP) assays remains a challenge. We have developed an optimized ChIP assay termed Maximized Objects for Better Enrichment (MOBE)-ChIP, which improves ChIP sensitivity and allows the detection of cell-type-specific signals at a genome-wide scale. Here, I describe the procedure for implementing this method for the study of plant transcription factors. Besides being useful for cell-type-specific studies, MOBE-ChIP can also be employed as a general strategy for enhancing ChIP signals.


Assuntos
Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/metabolismo , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Ligação Proteica
19.
Dev Cell ; 33(1): 107-18, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25850675

RESUMO

Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show that regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate, and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biomarcadores/metabolismo , Linhagem da Célula , Perfilação da Expressão Gênica , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Comunicação Celular , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
20.
Elife ; 32014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25303364

RESUMO

The presumed totipotency of plant cells leads to questions about how specific stem cell lineages and terminal fates could be established. In the Arabidopsis stomatal lineage, a transient self-renewing phase creates precursors that differentiate into one of two epidermal cell types, guard cells or pavement cells. We found that irreversible differentiation of guard cells involves RETINOBLASTOMA-RELATED (RBR) recruitment to regulatory regions of master regulators of stomatal initiation, facilitated through interaction with a terminal stomatal lineage transcription factor, FAMA. Disrupting physical interactions between FAMA and RBR preferentially reveals the role of RBR in enforcing fate commitment over its role in cell-cycle control in this developmental context. Analysis of the phenotypes linked to the modulation of FAMA and RBR sheds new light on the way iterative divisions and terminal differentiation are coordinately regulated in a plant stem-cell lineage.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Estômatos de Plantas/citologia , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA