Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 172, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637760

RESUMO

The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Humanos , Pulmão/metabolismo , Traumatismo por Reperfusão/patologia , Endotélio/metabolismo , Endotélio/patologia , Lesão Pulmonar/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879616

RESUMO

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


Assuntos
Cavéolas/metabolismo , Endotélio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Canais de Cátion TRPV/metabolismo , Animais , Pressão Arterial , Humanos , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Quinase C/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/genética
3.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103557

RESUMO

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Assuntos
Lesão Pulmonar Aguda/patologia , Inflamação/fisiopatologia , Relatório de Pesquisa/tendências , Lesão Pulmonar Aguda/imunologia , Animais
4.
J Surg Res ; 280: 280-287, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36030603

RESUMO

INTRODUCTION: Mainstays of current treatment for acute respiratory distress syndrome (ARDS) focus on supportive care and rely on intrinsic organ recovery. Animal models of ARDS are often limited by systemic injury. We hypothesize that superimposing gastric aspiration and ventilator-induced injury will induce a lung-specific injury model of severe ARDS. MATERIALS AND METHODS: Adult swine (n = 8) were subject to a 12 h injury development period followed by 24 h of post-injury monitoring. Lung injury was induced with gastric secretions (3 cc/kg body weight/lung, pH 1-2) instilled to bilateral mainstem bronchi under direct bronchoscopic vision. Ventilator settings within the injury period contradicted baseline settings using high tidal volumes and low positive end-expiratory pressure. Baseline settings were restored following the injury period. Arterial oxygenation and lung compliance were monitored. RESULTS: At 12 h, PaO2/FiO2 ratio and static and dynamic compliance were significantly reduced from baseline (P < 0.05). During the postinjury period, animals showed no signs of recovery in PaO2/FiO2 ratio and lung compliance. Lung edema (wet/dry weight ratio) of injured lungs was significantly elevated versus noninjured lungs (8.5 ± 1.7 versus 5.6 ± 0.3, P = 0.009). Expression of proinflammatory cytokines IL-6 and IL-8 were significantly elevated in injured lungs (P < 0.05). CONCLUSIONS: Twelve hours of high tidal volume and low positive end-expiratory pressure in conjunction with low-pH gastric content instillation produces significant acute lung injury in swine. This large animal model may be useful for testing severe ARDS treatment strategies.


Assuntos
Interleucina-8 , Síndrome do Desconforto Respiratório , Suínos , Animais , Interleucina-6 , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Ventiladores Mecânicos
5.
Curr Top Membr ; 89: 43-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210151

RESUMO

The alveolo-capillary barrier is relatively impermeable, and facilitates gas exchange via the large alveolar surface in the lung. Disruption of alveolo-capillary barrier leads to accumulation of edema fluid in lung injury. Studies in animal models of various forms of lung injury provide evidence that TRPV4 channels play a critical role in disruption of the alveolo-capillary barrier and pathogenesis of lung injury. TRPV4 channels from capillary endothelial cells, alveolar epithelial cells, and immune cells have been implicated in the pathogenesis of lung injury. Recent studies in endothelium-specific TRPV4 knockout mice point to a central role for endothelial TRPV4 channels in lung injury. In this chapter, we review the findings on the pathological roles of endothelial TRPV4 channels in different forms of lung injury and future directions for further investigation.


Assuntos
Lesão Pulmonar , Edema Pulmonar , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Knockout , Edema Pulmonar/etiologia , Edema Pulmonar/patologia , Canais de Cátion TRPV
6.
Curr Opin Organ Transplant ; 26(2): 250-257, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33651003

RESUMO

PURPOSE OF REVIEW: Primary graft dysfunction (PGD) is the leading cause of early mortality following lung transplantation and is typically caused by lung ischemia-reperfusion injury (IRI). Current management of PGD is largely supportive and there are no approved therapies to prevent lung IRI after transplantation. The purinergic signaling network plays an important role in this sterile inflammatory process, and pharmacologic manipulation of said network is a promising therapeutic strategy. This review will summarize recent findings in this area. RECENT FINDINGS: In the past 18 months, our understanding of lung IRI has improved, and it is becoming clear that the purinergic signaling network plays a vital role. Recent works have identified critical components of the purinergic signaling network (Pannexin-1 channels, ectonucleotidases, purinergic P1 and P2 receptors) involved in inflammation in a number of pathologic states including lung IRI. In addition, a functionally-related calcium channel, the transient receptor potential vanilloid type 4 (TRPV4) channel, has recently been linked to purinergic signaling and has also been shown to mediate lung IRI. SUMMARY: Agents targeting components of the purinergic signaling network are promising potential therapeutics to limit inflammation associated with lung IRI and thus decrease the risk of developing PGD.


Assuntos
Transplante de Pulmão , Disfunção Primária do Enxerto , Traumatismo por Reperfusão , Humanos , Pulmão , Transplante de Pulmão/efeitos adversos , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
7.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L304-L313, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800262

RESUMO

Primary graft dysfunction after lung transplantation, a consequence of ischemia-reperfusion injury (IRI), is a major cause of morbidity and mortality. IRI involves acute inflammation and innate immune cell activation, leading to rapid infiltration of neutrophils. Formyl peptide receptor 1 (FPR1) expressed by phagocytic leukocytes plays an important role in neutrophil function. The cell surface expression of FPR1 is rapidly and robustly upregulated on neutrophils in response to inflammatory stimuli. Thus, we hypothesized that use of [99mTc]cFLFLF, a selective FPR1 peptide ligand, would permit in vivo neutrophil labeling and noninvasive imaging of IRI using single-photon emission computed tomography (SPECT). A murine model of left lung IRI was utilized. Lung function, neutrophil infiltration, and SPECT imaging were assessed after 1 h of ischemia and 2, 12, or 24 h of reperfusion. [99mTc]cFLFLF was injected 2 h before SPECT. Signal intensity by SPECT and total probe uptake by gamma counts were 3.9- and 2.3-fold higher, respectively, in left lungs after ischemia and 2 h of reperfusion versus sham. These values significantly decreased with longer reperfusion times, correlating with resolution of IRI as shown by improved lung function and decreased neutrophil infiltration. SPECT results were confirmed using Cy7-cFLFLF-based fluorescence imaging of lungs. Immunofluorescence microscopy confirmed cFLFLF binding primarily to activated neutrophils. These results demonstrate that [99mTc]cFLFLF SPECT enables noninvasive detection of lung IRI and permits monitoring of resolution of injury over time. Clinical application of [99mTc]cFLFLF SPECT may permit diagnosis of lung IRI for timely intervention to improve outcomes after transplantation.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/patologia , Oligopeptídeos/química , Receptores de Formil Peptídeo/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Imagem Óptica , Distribuição Tecidual
8.
Am J Transplant ; 20(3): 633-640, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31605463

RESUMO

The role of extracellular purine nucleotides, including adenosine triphosphate (ATP) and adenosine, as modulators of posttransplantation outcome and ischemia-reperfusion injury is becoming increasingly evident. Upon pathological release of ATP, binding and activation of P2 purinergic surface receptors promote tissue injury and inflammation, while the expression and activation of P1 receptors for adenosine have been shown to attenuate inflammation and limit ischemia-induced damage, which are central to the viability and long-term success of allografts. Here we review the current state of the transplant field with respect to the role of extracellular nucleotide signaling, with a focus on the sources and functions of extracellular ATP. The connection between ischemia reperfusion, purinergic signaling, and graft preservation, as well as the role of ATP and adenosine as driving factors in the promotion and suppression of posttransplant inflammation and allograft rejection, are discussed. We also examine novel therapeutic approaches that take advantage of the ischemia-reperfusion-responsive and immunomodulatory roles for purinergic signaling with the goal of enhancing graft viability, attenuating posttransplant inflammation, and minimizing complications including rejection, graft failure, and associated comorbidities.


Assuntos
Transplante de Órgãos , Traumatismo por Reperfusão , Trifosfato de Adenosina , Humanos , Nucleotídeos , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
9.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957547

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality, and current management has a dramatic impact on healthcare resource utilization. While our understanding of this disease has improved, the majority of treatment strategies remain supportive in nature and are associated with continued poor outcomes. There is a dramatic need for the development and breakthrough of new methods for the treatment of ARDS. Isolated machine lung perfusion is a promising surgical platform that has been associated with the rehabilitation of injured lungs and the induction of molecular and cellular changes in the lung, including upregulation of anti-inflammatory and regenerative pathways. Initially implemented in an ex vivo fashion to evaluate marginal donor lungs prior to transplantation, recent investigations of isolated lung perfusion have shifted in vivo and are focused on the management of ARDS. This review presents current tenants of ARDS management and isolated lung perfusion, with a focus on how ex vivo lung perfusion (EVLP) has paved the way for current investigations utilizing in vivo lung perfusion (IVLP) in the treatment of severe ARDS.


Assuntos
Inflamação/terapia , Lesão Pulmonar/terapia , Perfusão/métodos , Síndrome do Desconforto Respiratório/terapia , Animais , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Inflamação/fisiopatologia , Lesão Pulmonar/fisiopatologia , Perfusão/história , Perfusão/instrumentação , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Doadores de Tecidos
10.
Ann Surg ; 269(6): 1176-1183, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31082918

RESUMO

OBJECTIVE: We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR. SUMMARY BACKGROUND DATA: Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist. METHODS: Adult swine underwent 20 minutes of circulatory arrest, induced by ventricular fibrillation, followed by 6 hours of reperfusion with ECPR. Animals were randomized to vehicle control, low-dose A2AR agonist, or high-dose A2AR agonist. A perfusion specialist using a goal-directed resuscitation protocol managed all the animals during the reperfusion period. Hourly blood, urine, and tissue samples were collected. Biochemical and microarray analyses were performed to identify differential inflammatory markers and gene expression between groups. RESULTS: Both the treatment groups demonstrated significantly higher percent reduction from peak lactate after reperfusion compared with vehicle controls. Control animals required significantly more fluid, epinephrine, and higher final pump flow while having lower urine output than both the treatment groups. The treatment groups had lower urine NGAL, an early marker of kidney injury (P = 0.01), lower plasma aspartate aminotransferase, and reduced rate of troponin rise (P = 0.01). Pro-inflammatory cytokines were lower while anti-inflammatory cytokines were significantly higher in the treatment groups. CONCLUSIONS: Using a novel and clinically relevant porcine model of circulatory arrest and ECPR, we demonstrated that a selective A2AR agonist significantly attenuated systemic IRI and warrants clinical investigation.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Reanimação Cardiopulmonar/efeitos adversos , Parada Cardíaca/terapia , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Parada Cardíaca/complicações , Masculino , Traumatismo por Reperfusão/etiologia , Suínos
11.
Arterioscler Thromb Vasc Biol ; 38(4): 843-853, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472233

RESUMO

OBJECTIVE: Neutrophils promote experimental abdominal aortic aneurysm (AAA) formation via a mechanism that is independent from MMPs (matrix metalloproteinases). Recently, we reported a dominant role of IL (interleukin)-1ß in the formation of murine experimental AAAs. Here, the hypothesis that IL-1ß-induced neutrophil extracellular trap formation (NETosis) promotes AAA was tested. APPROACH AND RESULTS: NETs were identified through colocalized staining of neutrophil, Cit-H3 (citrullinated histone H3), and DNA, using immunohistochemistry. NETs were detected in human AAAs and were colocalized with IL-1ß. In vitro, IL-1RA attenuated IL-1ß-induced NETosis in human neutrophils. Mechanistically, IL-1ß treatment of isolated neutrophils induced nuclear localization of ceramide synthase 6 and synthesis of C16-ceramide, which was inhibited by IL-1RA or fumonisin B1, an inhibitor of ceramide synthesis. Furthermore, IL-1RA or fumonisin B1 attenuated IL1-ß-induced NETosis. In an experimental model of murine AAA, NETs were detected at a very early stage-day 3 of aneurysm induction. IL-1ß-knockout mice demonstrated significantly lower infiltration of neutrophils to aorta and were protected from AAA. Adoptive transfer of wild-type neutrophils promoted AAA formation in IL-1ß-knockout mice. Moreover, treatment of wild-type mice with Cl-amidine, an inhibitor NETosis, significantly attenuated AAA formation, whereas, treatment with deoxyribonuclease, a DNA digesting enzyme, had no effect on AAA formation. CONCLUSIONS: Altogether, the results suggest a dominant role of IL-1ß-induced NETosis in AAA formation.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Armadilhas Extracelulares/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Ceramidas/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Interleucina-1beta/deficiência , Interleucina-1beta/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência/métodos , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Neutrófilos/transplante , Ornitina/análogos & derivados , Ornitina/farmacologia , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Esfingosina N-Aciltransferase/metabolismo
12.
Heart Surg Forum ; 22(1): E001-E007, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30802188

RESUMO

BACKGROUND: Today's declining federal budget for scientific research is making it consistently more difficult to become federally funded. We hypothesized that even in this difficult era, surgeon-scientists have remained among the most productive and impactful researchers in lung transplantation. METHODS: Grants awarded by the NIH for the study of lung transplantation between 1985 and 2015 were identified by searching NIH RePORTER for 5 lung transplantation research areas. A grant impact metric was calculated for each grant by dividing the sum of impact factors for all associated manuscripts by the total funding for that grant. We used nonparametric univariate analysis to compare grant impact metrics by department. RESULTS: We identified 109 lung transplantation grants, totaling approximately $300 million, resulting in 2304 papers published in 421 different journals. Surgery has the third highest median grant impact metric (4.2 per $100,000). The department of surgery had a higher median grant impact metric compared to private companies (P <.0001). There was no statistical difference in the grant impact metric compared to all other medical specialties, individual departments with multiple grants, or all basic science departments (all P >.05). CONCLUSIONS: Surgeon-scientists in the field of lung transplantation have received fewer grants and less total funding compared to other researchers but have maintained an equally high level of productivity and impact. The dual-threat academic surgeon-scientist is an important asset to the research community and should continue to be supported by the NIH.


Assuntos
Pesquisa Biomédica/organização & administração , Administração Financeira/métodos , Organização do Financiamento , Transplante de Pulmão , Cirurgiões , Humanos , Estudos Retrospectivos , Estados Unidos
13.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L301-L312, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745255

RESUMO

Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.


Assuntos
Conexinas/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Edema Pulmonar/metabolismo , Traumatismo por Reperfusão/metabolismo , Vasculite/metabolismo , Animais , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/genética , Carbenoxolona/farmacologia , Conexinas/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Probenecid/farmacologia , Edema Pulmonar/dietoterapia , Edema Pulmonar/genética , Edema Pulmonar/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Vasculite/tratamento farmacológico , Vasculite/genética , Vasculite/patologia
14.
Respir Res ; 19(1): 17, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29368614

RESUMO

Imaging holds an important role in the diagnosis of lung diseases. Along with clinical tests, noninvasive imaging techniques provide complementary and valuable information that enables a complete differential diagnosis. Various novel molecular imaging tools are currently under investigation aimed toward achieving a better understanding of lung disease physiopathology as well as early detection and accurate diagnosis leading to targeted treatment. Recent research on molecular imaging methods that may permit differentiation of the cellular and molecular components of pulmonary disease and monitoring of immune activation are detailed in this review. The application of molecular imaging to lung disease is currently in its early stage, especially compared to other organs or tissues, but future studies will undoubtedly reveal useful pulmonary imaging probes and imaging modalities.


Assuntos
Pneumopatias/diagnóstico por imagem , Pneumopatias/metabolismo , Imagem Molecular/métodos , Diagnóstico Diferencial , Rejeição de Enxerto/diagnóstico por imagem , Rejeição de Enxerto/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Imagem Molecular/tendências
15.
J Surg Res ; 223: 58-63, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433886

RESUMO

BACKGROUND: The number of patients with end-stage pulmonary disease awaiting lung transplantation is at an all-time high, while the supply of available organs remains stagnant. Utilizing donation after circulatory death (DCD) donors may help to address the supply-demand mismatch. The objective of this study is to determine the potential donor pool expansion with increased procurement of DCD organs from patients who die at hospitals. MATERIAL AND METHODS: The charts of all patients who died at a single, rural, quaternary-care institution between August 2014 and June 2015 were reviewed for lung transplant candidacy. Inclusion criteria were age <65 y, absence of cancer and lung pathology, and cause of death other than respiratory or sepsis. RESULTS: A total of 857 patients died within a 1-year period and were stratified by age: pediatric <15 y (n = 32, 4%), young 15-64 y (n = 328, 38%), and old >65 y (n = 497, 58%). Those without cancer totaled 778 (90.8%) and 512 (59%) did not have lung pathology. This leaves 85 patients qualifying for DCD lung donation (pediatric n = 10, young n = 75, and old n = 0). Potential donors were significantly more likely to have clear chest X-rays (24.3% versus 10.0%, P < 0.0001) and higher mean PaO2/FiO2 (342.1 versus 197.9, P < 0.0001) compared with ineligible patients. CONCLUSIONS: A significant number of DCD lungs are available every year from patients who die within hospitals. We estimate the use of suitable DCD lungs could potentially result in a significant increase in the number of lungs available for transplantation.


Assuntos
Transplante de Pulmão , Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem
16.
Respir Res ; 18(1): 212, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268735

RESUMO

BACKGROUND: Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. METHODS: C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. RESULTS: Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. CONCLUSIONS: These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.


Assuntos
Vesículas Extracelulares/fisiologia , Transplante de Pulmão/métodos , Pulmão/fisiologia , Células-Tronco Mesenquimais/fisiologia , Traumatismo por Reperfusão/terapia , Choque/terapia , Animais , Vesículas Extracelulares/transplante , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Perfusão/métodos , Traumatismo por Reperfusão/patologia , Choque/patologia , Cordão Umbilical/citologia , Cordão Umbilical/transplante , Isquemia Quente/métodos
17.
Am J Respir Crit Care Med ; 193(9): 988-99, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26757359

RESUMO

RATIONALE: Ischemia-reperfusion (IR) injury after lung transplantation, which affects both short- and long-term allograft survival, involves activation of NADPH oxidase 2 (NOX2) and activation of invariant natural killer T (iNKT) cells to produce IL-17. Adenosine A2A receptor (A2AR) agonists are known to potently attenuate lung IR injury and IL-17 production. However, mechanisms for iNKT cell activation after IR and A2AR agonist-mediated protection remain unclear. OBJECTIVES: We tested the hypothesis that NOX2 mediates IL-17 production by iNKT cells after IR and that A2AR agonism prevents IR injury by blocking NOX2 activation in iNKT cells. METHODS: An in vivo murine hilar ligation model of IR injury was used, in which left lungs underwent 1 hour of ischemia and 2 hours of reperfusion. MEASUREMENTS AND MAIN RESULTS: Adoptive transfer of iNKT cells from p47(phox-/-) or NOX2(-/-) mice to Jα18(-/-) (iNKT cell-deficient) mice significantly attenuated lung IR injury and IL-17 production. Treatment with an A2AR agonist attenuated IR injury and IL-17 production in wild-type (WT) mice and in Jα18(-/-) mice reconstituted with WT, but not A2AR(-/-), iNKT cells. Furthermore, the A2AR agonist prevented IL-17 production by murine and human iNKT cells after acute hypoxia-reoxygenation by blocking p47(phox) phosphorylation, a critical step for NOX2 activation. CONCLUSIONS: NOX2 plays a key role in inducing iNKT cell-mediated IL-17 production and subsequent lung injury after IR. A primary mechanism for A2AR agonist-mediated protection entails inhibition of NOX2 in iNKT cells. Therefore, agonism of A2ARs on iNKT cells may be a novel therapeutic strategy to prevent primary graft dysfunction after lung transplantation.


Assuntos
Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Células T Matadoras Naturais/metabolismo , Receptor A2A de Adenosina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Pulmão/fisiopatologia , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/imunologia , Células T Matadoras Naturais/imunologia , Receptor A2A de Adenosina/imunologia
18.
Curr Opin Organ Transplant ; 21(3): 246-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26945320

RESUMO

PURPOSE OF REVIEW: Lungs are extremely susceptible to injury, and despite advances in surgical management and immunosuppression, outcomes for lung transplantation are the worst of any solid organ transplant. The success of lung transplantation is limited by high rates of primary graft dysfunction because of ischemia-reperfusion injury characterized by robust inflammation, alveolar damage, and vascular permeability. This review will summarize major mechanisms of lung ischemia-reperfusion injury with a focus on the most recent findings in this area. RECENT FINDINGS: Over the past 18 months, numerous studies have described strategies to limit lung ischemia-reperfusion injury in experimental settings, which often reveal mechanistic insight. Many of these strategies involved the use of various antioxidants, anti-inflammatory agents, mesenchymal stem cells, and ventilation with gaseous molecules. Further advancements have been achieved in understanding mechanisms of innate immune cell activation, neutrophil infiltration, endothelial barrier dysfunction, and oxidative stress responses. SUMMARY: Methods for prevention of primary graft dysfunction after lung transplant are urgently needed, and understanding mechanisms of ischemia-reperfusion injury is critical for the development of novel and effective therapeutic approaches. In doing so, both acute and chronic outcomes of lung transplant recipients will be significantly improved.


Assuntos
Inflamação/patologia , Pulmão/irrigação sanguínea , Traumatismo por Reperfusão/fisiopatologia , Humanos , Imunidade Inata , Pulmão/patologia
19.
Am J Physiol Lung Cell Mol Physiol ; 308(12): L1245-52, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25910934

RESUMO

Outcomes for lung transplantation are the worst of any solid organ, and ischemia-reperfusion injury (IRI) limits both short- and long-term outcomes. Presently no therapeutic agents are available to prevent IRI. Sphingosine 1-phosphate (S1P) modulates immune function through binding to a set of G protein-coupled receptors (S1PR1-5). Although S1P has been shown to attenuate lung IRI, the S1P receptors responsible for protection have not been defined. The present study tests the hypothesis that protection from lung IRI is primarily mediated through S1PR1 activation. Mice were treated with either vehicle, FTY720 (a nonselective S1P receptor agonist), or VPC01091 (a selective S1PR1 agonist and S1PR3 antagonist) before left lung IR. Function, vascular permeability, cytokine expression, neutrophil infiltration, and myeloperoxidase levels were measured in lungs. After IR, both FTY720 and VPC01091 significantly improved lung function (reduced pulmonary artery pressure and increased pulmonary compliance) vs. vehicle control. In addition, FTY720 and VPC01091 significantly reduced vascular permeability, expression of proinflammatory cytokines (IL-6, IL-17, IL-12/IL-23 p40, CC chemokine ligand-2, and TNF-α), myeloperoxidase levels, and neutrophil infiltration compared with control. No significant differences were observed between VPC01091 and FTY720 treatment groups. VPC01091 did not significantly affect elevated invariant natural killer T cell infiltration after IR, and administration of an S1PR1 antagonist reversed VPC01091-mediated protection after IR. In conclusion, VPC01091 and FTY720 provide comparable protection from lung injury and dysfunction after IR. These findings suggest that S1P-mediated protection from IRI is mediated by S1PR1 activation, independent of S1PR3, and that selective S1PR1 agonists may provide a novel therapeutic strategy to prevent lung IRI.


Assuntos
Ciclopentanos/farmacologia , Lesão Pulmonar/prevenção & controle , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Traumatismo por Reperfusão/prevenção & controle , Esfingosina/análogos & derivados , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Cloridrato de Fingolimode , Citometria de Fluxo , Técnicas Imunoenzimáticas , Imunossupressores/farmacologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA