Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 202(12): 3370-3380, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092636

RESUMO

The importance of antiviral CD8+ T cell recognition of alternative reading frame (ARF)-derived peptides is uncertain. In this study, we describe an epitope (NS1-ARF21-8) present in a predicted 14-residue peptide encoded by the +1 register of NS1 mRNA in the influenza A virus (IAV). NS1-ARF21-8 elicits a robust, highly functional CD8+ T cell response in IAV-infected BALB/c mice. NS1-ARF21-8 is presented from unspliced NS mRNA, likely from downstream initiation on a Met residue that comprises the P1 position of NS1-ARF21-8 Derived from a 14-residue peptide with no apparent biological function and negligible impacts on IAV infection, infectivity, and pathogenicity, NS1-ARF21-8 provides a clear demonstration of how immunosurveillance exploits natural errors in protein translation to provide antiviral immunity. We further show that IAV infection enhances a model cellular ARF translation, which potentially has important implications for virus-induced autoimmunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas não Estruturais Virais/metabolismo , Processamento Alternativo , Animais , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vigilância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Fases de Leitura Aberta/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
2.
Respirology ; 26(11): 1049-1059, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472161

RESUMO

BACKGROUND AND OBJECTIVE: Influenza virus (FLU), rhinovirus (RV) and respiratory syncytial virus (RSV) are the most common acute respiratory infections worldwide. Infection can cause severe health outcomes, while therapeutic options are limited, primarily relieving symptoms without attenuating the development of lesions or impaired lung function. We therefore examined the inflammatory response to these infections with the intent to identify common components that are critical drivers of immunopathogenesis and thus represent potential therapeutic targets. METHODS: BALB/c mice were infected with FLU, RV or RSV, and lung function, airway inflammation and immunohistopathology were measured over a 10-day period. Anti-IL-17A mAb was administered to determine the impact of attenuating this cytokine's function on the development and severity of disease. RESULTS: All three viruses induced severe airway constriction and inflammation at 2 days post-infection (dpi). However, only FLU induced prolonged inflammation till 10 dpi. Increased IL-17A expression was correlated with the alterations in lung function and its persistence. Neutralization of IL-17A did not affect the viral replication but led to the resolution of airway hyperresponsiveness. Furthermore, anti-IL-17A treatment resulted in reduced infiltration of neutrophils (in RV- and FLU-infected mice at 2 dpi) and lymphocytes (in RSV-infected mice at 2 dpi and FLU-infected mice at 10 dpi), and attenuated the severity of immunopathology. CONCLUSION: IL-17A is a common pathogenic molecule regulating disease induced by three prevalent respiratory viruses. Targeting the IL-17A pathway may provide a unified approach to the treatment of these respiratory infections alleviating both inflammation-induced lesions and difficulties in breathing.


Assuntos
Interleucina-17/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Picornaviridae/imunologia , Infecções por Vírus Respiratório Sincicial , Animais , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Vírus Sinciciais Respiratórios/imunologia , Rhinovirus
3.
PLoS Comput Biol ; 15(8): e1007294, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425503

RESUMO

The strength and breadth of an individual's antibody repertoire is an important predictor of their response to influenza infection or vaccination. Although progress has been made in understanding qualitatively how repeated exposures shape the antibody mediated immune response, quantitative understanding remains limited. We developed a set of mathematical models describing short-term antibody kinetics following influenza infection or vaccination and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or without adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit models with various immunological mechanisms that have been empirically observed but have not previously been included in mathematical models of antibody landscapes, including: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity. Based on the parameter estimates of the best supported models, we describe a number of key immunological features. We found quantifiable differences in the degree of homologous and cross-reactive antibody boosting elicited by different exposure types. Infection and adjuvanted vaccination generally resulted in strong, broadly reactive responses whereas unadjuvanted vaccination resulted in a weak, narrow response. We found that the order of exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the second dose of adjuvanted vaccination resulted in substantially greater antibody boosting than the first. Either antigenic seniority or a titre ceiling effect were included in the two best fitting models, suggesting a role for a mechanism describing diminishing antibody boosting with repeated exposures. Although there was considerable uncertainty in our estimates of antibody waning parameters, our results suggest that both short and long term waning were present and would be identifiable with a larger set of experiments. These results highlight the potential use of repeat exposure animal models in revealing short-term, strain-specific immune dynamics of influenza.


Assuntos
Anticorpos Antivirais/sangue , Furões/imunologia , Vacinas contra Influenza/administração & dosagem , Modelos Imunológicos , Infecções por Orthomyxoviridae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Biologia Computacional , Reações Cruzadas , Modelos Animais de Doenças , Humanos , Imunização Secundária , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Cinética , Infecções por Orthomyxoviridae/virologia , Vacinas de Produtos Inativados/administração & dosagem
4.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187546

RESUMO

Small-animal models have been used to obtain many insights regarding the pathogenesis and immune responses induced following infection with human respiratory syncytial virus (hRSV). Among those described to date, infections in cotton rats, mice, guinea pigs, chinchillas, and Syrian hamsters with hRSV strains Long and/or A2 have been well characterized, although clinical isolates have also been examined. Ferrets are also susceptible to hRSV infection, but the pathogenesis and immune responses elicited following infection have not been well characterized. Here, we describe the infection of adult ferrets with hRSV Long or A2 via the intranasal route and characterized virus replication, as well as cytokine induction, in the upper and lower airways. Virus replication and cytokine induction during the acute phase of infection (days 0 to 15 postinfection) were similar between the two strains, and both elicited high levels of F glycoprotein-specific binding and neutralizing antibodies following virus clearance (days 16 to 22 postinfection). Importantly, we demonstrate transmission from experimentally infected donor ferrets to cohoused naive recipients and have characterized virus replication and cytokine induction in the upper airways of infected contact animals. Together, these studies provide a direct comparison of the pathogenesis of hRSV Long and A2 in ferrets and highlight the potential of this animal model to study serological responses and examine interventions that limit transmission of hRSV.IMPORTANCE Ferrets have been widely used to study pathogenesis, immunity, and transmission following human influenza virus infections; however, far less is known regarding the utility of the ferret model to study hRSV infections. Following intranasal infection of adult ferrets with the well-characterized Long or A2 strain of hRSV, we report virus replication and cytokine induction in the upper and lower airways, as well as the development of virus-specific humoral responses. Importantly, we demonstrate transmission of hRSV from experimentally infected donor ferrets to cohoused naive recipients. Together, these findings significantly enhance our understanding of the utility of the ferret as a small-animal model to investigate aspects of hRSV pathogenesis and immunity.


Assuntos
Modelos Animais de Doenças , Imunidade Humoral/imunologia , Infecções por Vírus Respiratório Sincicial/transmissão , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Infecções Respiratórias/virologia , Animais , Furões , Células HeLa , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/imunologia , Carga Viral , Replicação Viral
5.
J Infect Dis ; 218(3): 406-417, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29746640

RESUMO

Epidemiological studies have observed that the seasonal peak incidence of influenza virus infection is sometimes separate from the peak incidence of human respiratory syncytial virus (hRSV) infection, with the peak incidence of hRSV infection delayed. This is proposed to be due to viral interference, whereby infection with one virus prevents or delays infection with a different virus. We investigated viral interference between hRSV and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) in the ferret model. Infection with A(H1N1)pdm09 prevented subsequent infection with hRSV. Infection with hRSV reduced morbidity attributed to infection with A(H1N1)pdm09 but not infection, even when an increased inoculum dose of hRSV was used. Notably, infection with A(H1N1)pdm09 induced higher levels of proinflammatory cytokines, chemokines, and immune mediators in the ferret than hRSV. Minimal cross-reactive serological responses or interferon γ-expressing cells were induced by either virus ≥14 days after infection. These data indicate that antigen-independent mechanisms may drive viral interference between unrelated respiratory viruses that can limit subsequent infection or disease.


Assuntos
Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Infecções por Orthomyxoviridae/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Interferência Viral , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Furões , Imunidade Celular , Imunidade Humoral , Interferon gama/análise , Leucócitos Mononucleares/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Análise de Sobrevida
6.
J Infect Dis ; 217(4): 548-559, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29325138

RESUMO

Background: Two influenza B virus lineages, B/Victoria and B/Yamagata, cocirculate in the human population. While the lineages are serologically distinct, cross-reactive responses to both lineages have been detected. Viral interference describes the situation whereby infection with one virus limits infection and replication of a second virus. We investigated the potential for viral interference between the influenza B virus lineages. Methods: Ferrets were infected and then challenged 3, 10, or 28 days later with pairs of influenza B/Victoria and B/Yamagata viruses. Results: Viral interference occurred at challenge intervals of 3 and 10 days and occasionally at 28 days. At the longer interval, shedding of challenge virus was reduced, and this correlated with cross-reactive interferon γ responses from lymph nodes from virus-infected animals. Viruses from both lineages could prevent or significantly limit subsequent infection with a virus from the other lineage. Coinfections were rare, indicating the potential for reassortment between lineages is limited. Conclusions: These data suggest that innate and cross-reactive immunity mediate viral interference and that this may contribute to the dominance of a specific influenza B virus lineage in any given influenza season. Furthermore, infection with one influenza B virus lineage may be beneficial in protecting against subsequent infection with either influenza B virus lineage.


Assuntos
Proteção Cruzada , Vírus da Influenza B/imunologia , Vírus da Influenza B/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Interferência Viral , Animais , Reações Cruzadas , Modelos Animais de Doenças , Furões , Imunidade Inata
7.
J Virol ; 90(4): 1888-97, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656692

RESUMO

UNLABELLED: Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE: Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated liquid. We also showed that virus could spread from the respiratory tract to the brain, which was associated with end-stage disease, and very early viremia provided a marker for this. With upper respiratory tract exposure, infection of the brain was common but hard to detect, suggesting that human neurological infections might be typically undetected at autopsy. However, viral spread to systemic sites was slower after exposure to virus by this route than when virus was additionally delivered to the lungs, providing a better therapeutic window. In addition to exposure history, early parameters of infection, such as viremia, could help prioritize antiviral treatments for patients most at risk of succumbing to infection.


Assuntos
Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Virus da Influenza A Subtipo H5N1/fisiologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Furões , Masculino , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/transmissão , Medição de Risco , Análise de Sobrevida
8.
J Virol ; 90(12): 5724-5734, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053553

RESUMO

UNLABELLED: This study seeks to assess the ability of seasonal trivalent inactivated influenza vaccine (TIV) to induce nonneutralizing antibodies (Abs) with Fc-mediated functions in HIV-uninfected and HIV-infected subjects. Functional influenza-specific Ab responses were studied in 30 HIV-negative and 27 HIV-positive subjects immunized against seasonal influenza. All 57 subjects received the 2015 TIV. Fc-mediated antihemagglutinin (anti-HA) Ab activity was measured in plasma before and 4 weeks after vaccination using Fc-receptor-binding assays, NK cell activation assays, and phagocytosis assays. At baseline, the HIV-positive group had detectable but reduced functional Ab responses to both vaccine and nonvaccine influenza antigens. TIV enhanced Fc-mediated Ab responses in both HIV-positive and HIV-negative groups. A larger rise was generally observed in the HIV-positive group, such that there was no difference in functional Ab responses between the two groups after vaccination. The 2015 TIV enhanced functional influenza-specific Ab responses in both HIV-negative and HIV-positive subjects to a range of influenza HA proteins. The increase in functional Ab responses in the HIV-positive group supports recommendations to immunize this at-risk group. IMPORTANCE: Infection with HIV is associated with increasing disease severity following influenza infections, and annual influenza vaccinations are recommended for this target group. However, HIV-infected individuals respond relatively poorly to vaccination compared to healthy individuals, particularly if immunodeficient. There is therefore a need to increase our understanding of immunity to influenza in the context of underlying HIV infection. While antibodies can mediate direct virus neutralization, interactions with cellular Fc receptors may be important for anti-influenza immunity in vivo by facilitating antibody-dependent cellular cytotoxicity (ADCC) and/or antibody-dependent phagocytosis (ADP). The ability of seasonal influenza vaccines to induce antibody responses with potent Fc-mediated antiviral activity is currently unclear. Probing the ADCC and ADP responses to influenza vaccination has provided important new information in the quest to improve immunity to influenza.


Assuntos
Anticorpos Antivirais/sangue , Infecções por HIV/imunologia , Vacinas contra Influenza/imunologia , Receptores Fc/imunologia , Adulto , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Masculino , Pessoa de Meia-Idade , Fagocitose , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
9.
J Theor Biol ; 413: 34-49, 2017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-27856216

RESUMO

The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.


Assuntos
Imunidade Adaptativa , Reações Cruzadas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Memória Imunológica , Influenza Humana/imunologia , Modelos Imunológicos , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Humanos , Carga Viral/imunologia
10.
J Virol ; 90(6): 2838-48, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719259

RESUMO

UNLABELLED: The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1ß, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-ß, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE: Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage. Surveillance data indicate that the burden of disease is higher in some seasons, yet it is unclear whether this is due to specific virus strains or to other factors, such as cross-reactive immunity or clinical definitions of influenza. We directly compared disease severities and localized inflammatory responses to different seasonal influenza virus strains, including the 2009 pandemic strain, in healthy naive ferrets. We found that the disease severities and the cytokine and chemokine responses were similar irrespective of the seasonal strain or the location of the infection in the respiratory tract. This suggests that factors other than the immune response to a particular virus (sub)type contribute to the variable impact of influenza virus infection in a population.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Animais , Temperatura Corporal , Peso Corporal , Citocinas/análise , Modelos Animais de Doenças , Feminino , Furões , Perfilação da Expressão Gênica , Humanos , Masculino , Infecções por Orthomyxoviridae/virologia , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Carga Viral , Eliminação de Partículas Virais
11.
PLoS Comput Biol ; 11(8): e1004334, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26284917

RESUMO

Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.


Assuntos
Imunidade Inata/imunologia , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Biologia Computacional , Modelos Animais de Doenças , Furões , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Modelos Imunológicos , Orthomyxoviridae/imunologia , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Carga Viral
12.
J Infect Dis ; 212(11): 1701-10, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25943206

RESUMO

BACKGROUND: Epidemiological studies suggest that, following infection with influenza virus, there is a short period during which a host experiences a lower susceptibility to infection with other influenza viruses. This viral interference appears to be independent of any antigenic similarities between the viruses. We used the ferret model of human influenza to systematically investigate viral interference. METHODS: Ferrets were first infected then challenged 1-14 days later with pairs of influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses circulating in 2009 and 2010. RESULTS: Viral interference was observed when the interval between initiation of primary infection and subsequent challenge was <1 week. This effect was virus specific and occurred between antigenically related and unrelated viruses. Coinfections occurred when 1 or 3 days separated infections. Ongoing shedding from the primary virus infection was associated with viral interference after the secondary challenge. CONCLUSIONS: The interval between infections and the sequential combination of viruses were important determinants of viral interference. The influenza viruses in this study appear to have an ordered hierarchy according to their ability to block or delay infection, which may contribute to the dominance of different viruses often seen in an influenza season.


Assuntos
Modelos Animais de Doenças , Influenza Humana/imunologia , Influenza Humana/virologia , Orthomyxoviridae/imunologia , Interferência Viral/imunologia , Animais , Coinfecção , Furões , Humanos , Eliminação de Partículas Virais
13.
PLoS Pathog ; 9(5): e1003354, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671418

RESUMO

Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.


Assuntos
Antígenos Virais , Deriva Genética , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Mutação de Sentido Incorreto/imunologia , Pandemias , Substituição de Aminoácidos , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Embrião de Galinha , Modelos Animais de Doenças , Cães , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/imunologia , Células Madin Darby de Rim Canino , Masculino
14.
BMC Infect Dis ; 15: 101, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25887952

RESUMO

BACKGROUND: H1N1 influenza viruses mutate rapidly, rendering vaccines developed in any given year relatively ineffective in subsequent years. Thus it is necessary to generate new vaccines every year, but this is time-consuming and resource-intensive. Should a highly virulent influenza strain capable of human-to-human transmission emerge, these factors will severely limit the number of people that can be effectively immunised against that strain in time to prevent a pandemic. An adjuvant and mode of administration capable of rendering ordinarily unprotective vaccine doses protective would thus be highly advantageous. METHODS: The carbohydrate mannan was conjugated to whole inactivated H1N1 influenza virus at a range of ratios, and mixed with it at a range of ratios, and various doses of the resulting preparations were administered to mice via the intranasal (IN) route. Serum immunity was assessed via antigen-specific IgG ELISA and the haemagglutination-inhibition (HI) assay, and mucosal immunity was assessed via IgA ELISA of bronchio-alveolar lavages. RESULTS: IN-administered inactivated H1N1 mixed with mannan induced higher serum IgG and respiratory-tract IgA than inactivated H1N1 conjugated to mannan, and HIN1 alone. Adjuvantation was mannan-dose-dependent, with 100 µg of mannan adjuvanting 1 µg of H1N1 more effectively than 10 or 50 µg of mannan. Serum samples from mice immunised with 1 µg H1N1 adjuvanted with 10 µg mannan did not inhibit agglutination of red blood cells (RBCs) at a dilution factor of 10 in the HI assay, but samples resulting from adjuvantation with 50 and 100 µg mannan inhibited agglutination at dilution factors of ≥ 40. Both serum IgG1 and IgG2a were induced by IN mannan-adjuvanted H1N1 vaccination, suggesting the induction of humoral and cellular immunity. CONCLUSIONS: Mixing 100 µg of mannan with 1 µg of inactivated H1N1 adjuvanted the vaccine in mice, such that IN immunisation induced higher serum IgG and respiratory tract IgA than immunisation with virus alone. The serum from mice thus immunised inhibited H1N1-mediated RBC agglutination strongly in vitro. If mannan similarly adjuvants low doses of influenza vaccine in humans, it could potentially be used for vaccine 'dose-sparing' in the event that a vaccine shortage arises from an epidemic involving a highly virulent human-to-human transmissable influenza strain.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Pulmão/imunologia , Mananas/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos/efeitos dos fármacos , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Pulmão/metabolismo , Mananas/imunologia , Mananas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Vacinação/métodos
15.
J Immunol ; 190(4): 1837-48, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23319732

RESUMO

A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.


Assuntos
Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Testes de Neutralização/métodos , Adulto , Animais , Pré-Escolar , Reações Cruzadas/imunologia , Testes de Inibição da Hemaglutinação/métodos , Hemaglutininas Virais/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/metabolismo , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Macaca nemestrina , Pessoa de Meia-Idade , Ligação Proteica/imunologia , Adulto Jovem
16.
J Infect Dis ; 210(11): 1811-22, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916185

RESUMO

BACKGROUND: Intravenous immunoglobulin (IVIG) is a purified pool of human antibodies from thousands of donors that is used to prevent or treat primary immune deficiency, several infectious diseases, and autoimmune diseases. The antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) against heterologous influenza strains may be present in IVIG preparations. METHODS: We tested 8 IVIG preparations prior to the 2009 H1N1 swine-origin influenza pandemic and 10 IVIG preparations made after 2010 for their ability to mediate influenza-specific ADCC. RESULTS: ADCC mediating antibodies to A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) were detected in IVIG preparations prior to the 2009-H1N1 pandemic. The HA-specific ADCC targeted both the HA1 and HA2 regions of A(H1N1)pdm09 HA and was capable of recognizing a broad range of HA proteins including those from recent avian influenza strains A(H5N1) and A(H7N9). The low but detectable ADCC recognition of A(H7N9) was likely due to rare individuals in the population contributing cross-reactive antibodies to IVIG. CONCLUSIONS: IVIG preparations contain broadly cross-reactive ADCC mediating antibodies. IVIG may provide at least some level of protection for individuals at high risk of severe influenza disease, especially during influenza pandemics prior to the development of effective vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Reações Cruzadas/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Feminino , Testes de Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
J Virol ; 87(24): 13706-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109221

RESUMO

Yearly vaccination with the trivalent inactivated influenza vaccine (TIV) is recommended, since current vaccines induce little cross neutralization to divergent influenza strains. Whether the TIV can induce antibody-dependent cellular cytotoxicity (ADCC) responses that can cross-recognize divergent influenza virus strains is unknown. We immunized 6 influenza-naive pigtail macaques twice with the 2011-2012 season TIV and then challenged the macaques, along with 12 control macaques, serially with H1N1 and H3N2 viruses. We measured ADCC responses in plasma to a panel of H1 and H3 hemagglutinin (HA) proteins and influenza virus-specific CD8 T cell (CTL) responses using a sensitive major histocompatibility complex (MHC) tetramer reagent. The TIV was weakly immunogenic and, although binding antibodies were detected by enzyme-linked immunosorbent assay (ELISA), did not induce detectable influenza virus-specific ADCC or CTL responses. The H1N1 challenge elicited robust ADCC to both homologous and heterologous H1 HA proteins, but not influenza virus HA proteins from different subtypes (H2 to H7). There was no anamnestic influenza virus-specific ADCC or CTL response in vaccinated animals. The subsequent H3N2 challenge did not induce or boost ADCC either to H1 HA proteins or to divergent H3 proteins but did boost CTL responses. ADCC or CTL responses were not induced by TIV vaccination in influenza-naive macaques. There was a marked difference in the ability of infection compared to that of vaccination to induce cross-reactive ADCC and CTL responses. Improved vaccination strategies are needed to induce broad-based ADCC immunity to influenza.


Assuntos
Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Macaca , Masculino , Vacinação
18.
J Virol ; 87(8): 4146-60, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345519

RESUMO

There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.


Assuntos
Evasão da Resposta Imune , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Epitopos/genética , Epitopos/imunologia , Feminino , Produtos do Gene gag/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Macaca nemestrina , Masculino , Mutação de Sentido Incorreto , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
19.
J Infect Dis ; 208(7): 1051-61, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23812238

RESUMO

BACKGROUND: During the 2009 pandemic of influenza A virus subtype H1N1 (A[H1N1]pdm09) infection, older individuals were partially protected from severe disease. It is not known whether preexisting antibodies with effector functions such as antibody-dependent cellular cytotoxicity (ADCC) contributed to the immunity observed. METHODS: We tested serum specimens obtained from 182 individuals aged 1-72 years that were collected either immediately before or after the A(H1N1)pdm09 pandemic for ADCC antibodies to the A(H1N1)pdm09 hemagglutinin (HA) protein. RESULTS: A(H1N1)pdm09 HA-specific ADCC antibodies were detected in almost all individuals aged >45 years (28/31 subjects) before the 2009 A(H1N1) pandemic. Conversely, only approximately half of the individuals aged 1-14 years (11/31) and 15-45 years (17/31) had cross-reactive ADCC antibodies before the 2009 A(H1N1) pandemic. The A(H1N1)pdm09-specific ADCC antibodies were able to efficiently mediate the killing of influenza virus-infected respiratory epithelial cells. Further, subjects >45 years of age had higher ADCC titers to a range of seasonal H1N1 HA proteins, including from the 1918 virus, compared with younger individuals. CONCLUSIONS: ADCC antibodies may have contributed to the protection exhibited in older individuals during the 2009 A(H1N1) pandemic. This work has significant implications for improved vaccination strategies for future influenza pandemics.


Assuntos
Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Emerg Infect Dis ; 19(1): 92-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23260059

RESUMO

To estimate population attack rates of influenza A(H1N1)pdm2009 in the Southern Hemisphere during June-August 2009, we conducted several serologic studies. We pooled individual-level data from studies using hemagglutination inhibition assays performed in Australia, New Zealand, and Singapore. We determined seropositive proportions (titer ≥40) for each study region by age-group and sex in pre- and postpandemic phases, as defined by jurisdictional notification data. After exclusions, the pooled database consisted of, 4,414 prepandemic assays and 7,715 postpandemic assays. In the prepandemic phase, older age groups showed greater seropositive proportions, with age-standardized, community-based proportions ranging from 3.5% in Singapore to 11.9% in New Zealand. In the postpandemic phase, seropositive proportions ranged from 17.5% in Singapore to 30.8% in New Zealand, with highest proportions seen in school-aged children. Pregnancy and residential care were associated with lower postpandemic seropositivity, whereas Aboriginal and Torres Strait Islander Australians and Pacific Peoples of New Zealand had greater postpandemic seropositivity.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/epidemiologia , Pandemias , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/imunologia , Austrália/epidemiologia , Criança , Pré-Escolar , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Incidência , Lactente , Influenza Humana/etnologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Havaiano Nativo ou Outro Ilhéu do Pacífico , Nova Zelândia/epidemiologia , Gravidez , Estudos Soroepidemiológicos , Singapura/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA