Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glob Chang Biol ; 24(6): 2708-2720, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29330969

RESUMO

Invasions of freshwater habitats by marine and brackish species have become more frequent in recent years with many of those species originating from the Ponto-Caspian region. Populations of Ponto-Caspian species have successfully established in the North and Baltic Seas and their adjoining rivers, as well as in the Great Lakes-St. Lawrence River region. To determine if Ponto-Caspian taxa more readily acclimatize to and colonize diverse salinity habitats than taxa from other regions, we conducted laboratory experiments on 22 populations of eight gammarid species native to the Ponto-Caspian, Northern European and Great Lakes-St. Lawrence River regions. In addition, we conducted a literature search to survey salinity ranges of these species worldwide. Finally, to explore evolutionary relationships among examined species and their populations, we sequenced the mitochondrial cytochrome c oxidase subunit I gene (COI) from individuals used for our experiments. Our study revealed that all tested populations tolerate wide ranges of salinity, however, different patterns arose among species from different regions. Ponto-Caspian taxa showed lower mortality in fresh water, while Northern European taxa showed lower mortality in fully marine conditions. Genetic analyses showed evolutionary divergence among species from different regions. Due to the geological history of the two regions, as well as high tolerance of Ponto-Caspian species to fresh water, whereas Northern European species are more tolerant of fully marine conditions, we suggest that species originating from the Ponto-Caspian and Northern European regions may be adapted to freshwater and marine environments, respectively. Consequently, the perception that Ponto-Caspian species are more successful colonizers might be biased by the fact that areas with highest introduction frequency of NIS (i.e., shipping ports) are environmentally variable habitats which often include freshwater conditions that cannot be tolerated by euryhaline taxa of marine origin.


Assuntos
Anfípodes/fisiologia , Evolução Biológica , Espécies Introduzidas , Tolerância ao Sal , Animais , Proteínas de Artrópodes/genética , Canadá , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Evolução Molecular , Proteínas Mitocondriais/genética , Estados Unidos
2.
Front Ecol Environ ; 16(6): 345-353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31942166

RESUMO

Biological invasions are largely considered to be a "numbers game", wherein the larger the introduction effort, the greater the probability that an introduced population will become established. However, conditions during transport - an early stage of the invasion - can be particularly harsh, thereby greatly reducing the size of a population available to establish in a new region. Some successful non-indigenous species are more tolerant of environmental and anthropogenic stressors than related native species, possibly stemming from selection (ie survival of only pre-adapted individuals for particular environmental conditions) during the invasion process. By reviewing current literature concerning population genetics and consequences of selection on population fitness, we propose that selection acting on transported populations can facilitate local adaptation, which may result in a greater likelihood of invasion than predicted by propagule pressure alone. Specifically, we suggest that detailed surveys should be conducted to determine interactions between molecular mechanisms and demographic factors, given that current management strategies may underestimate invasion risk.

3.
Sci Total Environ ; 843: 156732, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716743

RESUMO

Lakes are considered important regulators of atmospheric greenhouse gases (GHG). We estimated late summer open water GHG fluxes in nine hemiboreal lakes in Estonia classified under different lake types according to the European Water Framework Directive (WFD). We also used the WFD typology to provide an improved estimate of the total GHG emission from all Estonian lakes with a gross surface area of 2204 km2 representing 45,227 km2 of hemiboreal landscapes (the territory of Estonia). The results demonstrate largely variable CO2 fluxes among the lake types with most active emissions from Alkalitrophic (Alk), Stratified Alkalitrophic (StratAlk), Dark Soft and with predominant binding in Coastal, Very Large, and Light Soft lakes. The CO2 fluxes correlated strongly with dissolved CO2 saturation (DCO2) values at the surface. Highest CH4 emissions were measured from the Coastal lake type, followed by Light Soft, StratAlk, and Alk types; Coastal, Light Soft, and StratAlk were emitting CH4 partly as bubbles. The only emitter of N2O was the Alk type. We measured weak binding of N2O in Dark Soft and Coastal lakes, while in all other studied lake types, the N2O fluxes were too small to be quantified. Diversely from the common viewpoint of lakes as net sources of both CO2 and CH4, it turns out from our results that at least in late summer, Estonian lakes are net sinks of both CO2 alone and the sum of CO2 and CH4. This is mainly caused by the predominant CO2 sink function of Lake Peipsi forming ¾ of the total lake area and showing negative net emissions even after considering the Global Warming Potential (GWP) of other GHGs. Still, by converting CH4 data into CO2 equivalents, the combined emission of all Estonian lakes (8 T C day-1) is turned strongly positive: 2720 T CO2 equivalents per day.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso , Receptores Proteína Tirosina Quinases , Água
4.
Front Psychol ; 11: 602401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384647

RESUMO

Growth of different body parts in humans is sensitive to different resource constraints that are mediated by parental investment. Parental investment can involve the expenditure of material, cognitive, and emotional resources on offspring. Cranial volume, an important predictor of cognitive ability, appears understudied in this context. We asked (1) whether there are associations between growth and family structure, self-reported estimates for resource availability, and sibling number; and (2) whether these constraints relate to head and body growth in a similar manner. We assessed the associations between parental investment, height, and cranial volume in a cross-sectional study of Estonian children (born 1980-87, aged 11-17). Height correlated negatively with the number of siblings but this association became negligible in a model controlling for birthweight, parental heights, and mother's age at birth. Unlike height, cranial volume was unrelated to sibling number, but it was negatively associated with self-reported meat and general resource shortage. Cranial volume was related to family structure and paternal education. Children living with both birth-parents had larger heads than those living in families containing a step-parent. Since these family types did not differ with respect to meat or general resource shortage, our findings suggest that families including both genetic parents provide non-material benefits that stimulate predominantly cranial growth. For the studied developmental period, cranial volume appeared a more sensitive marker of growth constraints than height. The potential of using cranial volume for quantifying physical impact of non-material parental investment deserves further attention.

5.
Mar Environ Res ; 116: 10-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970684

RESUMO

In contemporary ecosystems, organisms are increasingly confronted with suboptimal living conditions. We aimed to understand the role of ecosystem engineering species in suboptimal habitats from a population inhabiting the species range margin in naturally stressful conditions. We determined the impact of 2-4 cm sized patches of dwarfed mussels Mytilus trossulus close to its lower salinity limit in the North-Eastern Baltic Sea, on epibenthic community patterns. Mussels affected total macrofaunal abundance and biomass and the taxonomic and functional community structure based on abundances, as well as the species composition of macrofauna. Mussels did not affect ephemeral algae or sediment chlorophyll content, but increased the abundance, biomass, richness, and diversity of grazers, within a radius approximately twelve times the size of mussel patches. We can expect marginal populations of ecosystem engineers in suboptimal habitats to contribute to spatial heterogeneity in biotic patterns and eventual ecosystem stability.


Assuntos
Biodiversidade , Ecossistema , Mytilus/fisiologia , Animais , Biomassa , Clorofila/análise , Sedimentos Geológicos/química , Herbivoria/fisiologia , Invertebrados/fisiologia , Oceanos e Mares , Densidade Demográfica , Salinidade , Alga Marinha/fisiologia , Estresse Fisiológico
6.
PLoS One ; 10(8): e0136949, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317668

RESUMO

Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Mytilus/crescimento & desenvolvimento , Animais , Biomassa , Modelos Estatísticos , Crescimento Demográfico , Análise de Regressão , Ondas de Maré
7.
Mar Environ Res ; 102: 43-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24933437

RESUMO

Benthic suspension feeding is an important process in coastal ecosystems. Among all the World's oceans, coastal ecosystems are the most modified by human impact and changing at accelerating pace. It is complicated to understand, how various environmental factors affect feeding rates of suspension feeders in their natural habitats. Thus, shapes of such relationships are poorly described for several intersections of environmental gradients. In this study, relationships between grazing rates of an invasive bivalve Dreissena polymorpha and ambient environmental factors were investigated in a turbid eutrophic bay of the central Baltic Sea using a novel modelling method of Boosted Regression Trees (BRT), a statistical tool able to handle non-normal distributions, complex relationships, and interactive effects. Feeding rates of mussels were derived from field populations by measuring the content of algal pigments in specimens collected from their natural habitat. The content of pigments was converted to feeding rate separately each time using field experiments measuring simultaneously the content of pigments and biodeposition of mussels. The results suggest that feeding rates of D. polymorpha are related to several environmental factors which gradients outreach the optimal range for the local mussel population. All the observed effects were non-linear with complex shapes. Variability along the resource gradient was the most important predictor of mussel feeding, followed by salinity and disturbance caused by wind. The most important interaction occurred between disturbance and resource gradient, while feeding function showed more plasticity along the latter. Mapping of environmental tipping points with the aid of machine learning methods may enable to concentrate the most relevant information about ecological functions worldwide.


Assuntos
Dreissena/fisiologia , Comportamento Alimentar , Espécies Introduzidas , Animais , Baías , Bivalves , Ecossistema , Letônia , Modelos Teóricos , Oceanos e Mares , Pigmentos Biológicos/análise , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA