RESUMO
BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS: In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS: These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS: Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.
Assuntos
Demência Frontotemporal , Doença de Pick , Masculino , Camundongos , Animais , Demência Frontotemporal/genética , Endocanabinoides/uso terapêutico , Camundongos Transgênicos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismoRESUMO
Retigabine is a first-in-class potassium channel opener approved for patients with epilepsy. Unfortunately, several side effects have limited its use in clinical practice, overshadowing its beneficial effects. Multiple studies have shown that retigabine acts by enhancing the activity of members of the voltage-gated KCNQ (Kv7) potassium channel family, particularly the neuronal KCNQ channels KCNQ2-KCNQ5. However, it is currently unknown whether retigabine's action in neurons is mediated by all KCNQ neuronal channels or by only a subset. This knowledge is necessary to elucidate retigabine's mechanism of action in the central nervous system and its adverse effects and to design more effective and selective retigabine analogs. In this study, we show that the action of retigabine in excitatory neurons strongly depends on the presence of KCNQ3 channels. Deletion of Kcnq3 severely limited the ability of retigabine to reduce neuronal excitability in mouse CA1 and subiculum excitatory neurons. In addition, we report that in the absence of KCNQ3 channels, retigabine can enhance CA1 pyramidal neuron activity, leading to a greater number of action potentials and reduced spike frequency adaptation; this finding further supports a key role of KCNQ3 channels in mediating the action of retigabine. Our work provides new insight into the action of retigabine in forebrain neurons, clarifying retigabine's action in the nervous system.NEW & NOTEWORTHY Retigabine has risen to prominence as a first-in-class potassium channel opener approved by the Food and Drug Administration, with potential for treating multiple neurological disorders. Here, we demonstrate that KCNQ3 channels are the primary target of retigabine in excitatory neurons, as deleting these channels greatly diminishes the effect of retigabine in pyramidal neurons. Our data provide the first indication that retigabine controls neuronal firing properties primarily through KCNQ3 channels.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Carbamatos/farmacologia , Canal de Potássio KCNQ3/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Células Piramidais/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-ClampRESUMO
OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.
Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Mutação com Ganho de Função/genética , Canal de Potássio KCNQ3/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Variação Genética/genética , Humanos , Canal de Potássio KCNQ3/química , Masculino , Estrutura Secundária de Proteína , Adulto JovemRESUMO
Cannabis has been known as a medicine for several thousand years across many cultures and its beneficial effects are mostly due to the presence of cannabinoids, unique natural products, whose pharmacology is going to gain increasing interest in the scientific community. The discovery of the main psychoactive constituent of Cannabis sativa L., Δ9-tetrahydrocannabinol (Δ9-THC), led to the identification of at least 100 additional phytocannabinoids, including cannabidiol (CBD), cannabidivarin (CBDV), Δ9-tetrahydrocannabivarin (Δ9-THCV), and cannabigerol (CBG). These molecules are gaining growing interest for their medical properties; however, further research is needed to assess the differences in their pharmacokinetic and pharmacodymanic profiles. The aim of this study was to set up a rapid and accurate method, by using the LC-MS-IT-TOF technology, to detect and quantify CBD, CBDV, Δ9-THCV, and CBG in biological matrices. Data show that the method developed here is linear in the calibration range; recoveries from mouse tissues were in the 50-60% range and sensitivity was 2 ng/mL for CBDV, 4 ng/mL for CBG and THCV, and 7 ng/mL for CBD. The method is rapid, precise and accurate, and it will represent a fundamental tool to evaluate the pharmacokinetic and pharmacodynamic properties of selected phytocannabinoids in tissues from different animal models, and develop new cannabinoid-based medicine.
Assuntos
Canabidiol/análise , Canabinoides/análise , Dronabinol/análogos & derivados , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colite/veterinária , Colo/química , Colo/metabolismo , Dronabinol/análise , Limite de Detecção , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pâncreas/química , Pâncreas/metabolismoRESUMO
BACKGROUND: Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS: Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS: We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aß1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS: Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Endocanabinoides , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Camundongos , Endocanabinoides/metabolismo , Disfunção Cognitiva/metabolismo , Serotonina/metabolismo , Biomarcadores/metabolismo , Masculino , Concussão Encefálica/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Sintomas Prodrômicos , Peptídeos beta-Amiloides/metabolismoRESUMO
N-oleoylglycine (OlGly), a lipid derived from the basic component of olive oil, oleic acid, and N-oleoylalanine (OlAla) are endocannabinoid-like mediators. We report that OlGly and OlAla, by activating the peroxisome proliferator-activated receptor alpha (PPARα), reduce the rewarding properties of a highly palatable food, dopamine neuron firing in the ventral tegmental area, and the obesogenic effect of a high-fat diet rich in lard (HFD-L). An isocaloric olive oil HFD (HFD-O) reduced body weight gain compared to the HFD-L, in a manner reversed by PPARα antagonism, and enhanced brain and intestinal OlGly levels and gut microbial diversity. OlGly or OlAla treatment of HFD-L mice resulted in gut microbiota taxonomic changes partly similar to those induced by HFD-O. We suggest that OlGly and OlAla control body weight by counteracting highly palatable food overconsumption, and possibly rebalancing the gut microbiota, and provide a potential new mechanism of action for the obeso-preventive effects of olive oil-rich diets.
Assuntos
Endocanabinoides , PPAR alfa , Animais , Camundongos , Azeite de Oliva/farmacologia , Obesidade/etiologia , Obesidade/prevenção & controle , Peso CorporalRESUMO
N-oleoylglycine (OlGly) is a lipid mediator that belongs to the expanded version of the endocannabinoid (eCB) system, the endocannabinoidome (eCBome), which has recently gained increasing attention from the scientific community for its protective effects in a mouse model of mild traumatic brain injury. However, the effects of OlGly on cellular models of Parkinson's disease (PD) have not yet been investigated, whilst other lipoaminoacids have been reported to have beneficial effects. Moreover, the protective effects of OlGly seem to be mediated by direct activation of proliferator-activated receptor alpha (PPARα), which has already been investigated as a therapeutic target for PD. Therefore, this study aims to investigate the possible protective effects of OlGly in an in vitro model obtained by treating the neuroblastoma cell line, SH-SY5Y (both differentiated and not) with 1-methyl-4-phenyl-pyridinium (MPP+), which mimics some cellular aspects of a PD-like phenotype, in the presence or absence of the PPARα antagonist, GW6471. Our data show that MPP+ increases mRNA levels of PPARα in both non differentiated and differentiated cells. Using assays to assess cell metabolic activity, cell proliferation, and pro-inflammatory markers, we observed that OlGly (1 nM), both as treatment (1 h) and pre-treatment (4 h), is able to protect against neuronal damage induced by 24 h MPP+ exposure through PPARα. Moreover, using a targeted lipidomics approach, we demonstrate that OlGly exerts its effects also through the modulation of the eCBome. Finally, treatment with OlGly was able also to reduce increased IL-1ß induced by MPP+ in differentiated cells. In conclusion, our results suggest that OlGly could be a promising therapeutic agent for the treatment of MPP+-induced neurotoxicity.
RESUMO
Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.
RESUMO
Traumatic brain injury (TBI) is one of the main causes of death in young people for which currently no efficacious treatment exists. Recently, we have reported that mice with mild-TBI with a specific injury in the insula showed elevated levels of a little investigated N-acyl amino acid, N-oleoylglycine (OlGly). N-acyl amino acids have recently experienced an increased interest because of their important biological activities. They belong to the endocannabinoidome family of lipids with structural similarities with the endocannabinoids (eCBs). The aim of this study was to test the neuroprotective and antihyperalgesic actions of OlGly in a model of mouse mild-TBI (mTBI) and its effect on levels of eCBs and N-acylethanolamines at the end of treatment. Following mTBI, mice were administered a daily injection of OlGly (10-50-100 mg/kg i.p.) for 14 days. Treatment with OlGly normalized motor impairment and behavior in the light/dark box test, ameliorated TBI-induced thermal hyperalgesia and mechanical allodynia, and normalized aggressiveness and depression. Moreover, levels of eCBs and some N-acylethanolamines underwent significant changes 60 days after TBI, especially in the prefrontal cortex and hypothalamus, and OlGly reversed some of these changes. In conclusion, our findings reveal that OlGly ameliorates the behavioral alterations associated with mTBI in mice, while concomitantly modulating eCB and eCB-like mediator tone.
Assuntos
Concussão Encefálica/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Glicina/análogos & derivados , Ácidos Oleicos/farmacologia , Aminoácidos/metabolismo , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Glicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Kv7 K+ channels represent attractive pharmacological targets for the treatment of different neurological disorders, including epilepsy. In this paper, 42 conformationally restricted analogues of the prototypical Kv7 activator retigabine have been synthesized and tested by electrophysiological patch-clamp experiments as Kv7 agonists. When compared to retigabine (0.93 ± 0.43 µM), the EC50s for Kv7.2 current enhancements by compound 23a (0.08 ± 0.04 µM) were lower, whereas no change in potency was observed for 24a (0.63 ± 0.07 µM). In addition, compared to retigabine, 23a and 24a showed also higher potency in activating heteromeric Kv7.2/Kv7.3 and homomeric Kv7.4 channels. Molecular modeling studies provided new insights into the chemical features required for optimal interaction at the binding site. Stability studies evidenced improved chemical stability of 23a and 24a in comparison with retigabine. Overall, the present results highlight that the N5-alkylamidoindole moiety provides a suitable pharmacophoric scaffold for the design of chemically stable, highly potent and selective Kv7 agonists.
Assuntos
Indóis/farmacologia , Canal de Potássio KCNQ2/agonistas , Canal de Potássio KCNQ3/agonistas , Animais , Células CHO , Carbamatos/química , Cricetulus , Indóis/síntese química , Indóis/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Fenilenodiaminas/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Xenopus laevisRESUMO
OBJECTIVE: Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS: Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS: A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE: The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
RESUMO
Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.