Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Emerg Med ; 77: 158-163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150986

RESUMO

PURPOSE: The preferred vasopressor in post-cardiac arrest shock has not been established with robust clinical outcomes data. Our goal was to perform a systematic review and meta-analysis comparing rates of in-hospital mortality, refractory shock, and hemodynamic parameters in post-cardiac arrest patients who received either norepinephrine or epinephrine as primary vasopressor support. METHODS: We conducted a search of PubMed, Cochrane Library, and CINAHL from 2000 to 2022. Included studies were prospective, retrospective, or published abstracts comparing norepinephrine and epinephrine in adults with post-cardiac arrest shock or with cardiogenic shock and extractable post-cardiac arrest data. The primary outcome of interest was in-hospital mortality. Other outcomes included incidence of arrhythmias or refractory shock. RESULTS: The database search returned 2646 studies. Two studies involving 853 participants were included in the systematic review. The proposed meta-analysis was deferred due to low yield. Crude incidence of in-hospital mortality was numerically higher in the epinephrine group compared with norepinephrine in both studies, but only statistically significant in one. Risk of bias was moderate to severe for in-hospital mortality. Additional outcomes were reported differently between studies, minimizing direct comparison. CONCLUSION: The vasopressor with the best mortality and hemodynamic outcomes in post-cardiac arrest shock remains unclear. Randomized studies are crucial to remedy this.


Assuntos
Parada Cardíaca , Choque , Adulto , Humanos , Norepinefrina/uso terapêutico , Choque Cardiogênico/etiologia , Estudos Prospectivos , Estudos Retrospectivos , Epinefrina/uso terapêutico , Vasoconstritores/uso terapêutico , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/complicações , Choque/tratamento farmacológico , Choque/complicações , Hemodinâmica
2.
Nucleic Acids Res ; 45(19): 11088-11105, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977633

RESUMO

Oxidative stress has pervasive effects on cells but how they respond transcriptionally upon the initial insult is incompletely understood. We developed a nuclear walk-on assay that semi-globally quantifies nascent transcripts in promoter-proximal paused RNA polymerase II (Pol II). Using this assay in conjunction with ChIP-Seq, in vitro transcription, and a chromatin retention assay, we show that within a minute, hydrogen peroxide causes accumulation of Pol II near promoters and enhancers that can best be explained by a rapid decrease in termination. Some of the accumulated polymerases slowly move or 'creep' downstream. This second effect is correlated with and probably results from loss of NELF association and function. Notably, both effects were independent of DNA damage and ADP-ribosylation. Our results demonstrate the unexpected speed at which a global transcriptional response can occur. The findings provide strong support for the residence time of paused Pol II elongation complexes being much shorter than estimated from previous studies.


Assuntos
Genoma Humano/genética , Estresse Oxidativo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Interferência de RNA , Transcrição Gênica/efeitos dos fármacos , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
3.
Infect Immun ; 84(7): 2051-2058, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27113359

RESUMO

The Treponema denticola FhbB protein contributes to immune evasion by binding factor H (FH). Cleavage of FH by the T. denticola protease, dentilisin, may contribute to the local immune dysregulation that is characteristic of periodontal disease (PD). Although three FhbB phyletic types have been defined (FhbB1, FhbB2, and FhbB3), the in vivo expression patterns and antigenic heterogeneity of FhbB have not been assessed. Here, we demonstrate that FhbB is a dominant early antigen that elicits FhbB type-specific antibody (Ab) responses. Using the murine skin abscess model, we demonstrate that the presence or absence of FhbB or dentilisin significantly influences Ab responses to infection and skin abscess formation. Competitive binding analyses revealed that α-FhbB Ab can compete with FH for binding to T. denticola and block dentilisin-mediated FH cleavage. Lastly, we demonstrate that dentilisin cleavage sites reside within critical functional domains of FH, including the complement regulatory domain formed by CCPs 1 to 4. Analysis of the FH cleavage products revealed that they lack cofactor activity. The data presented here provide insight into the in vivo significance of dentilisin, FhbB and its antigenic diversity, and the potential impact of FH cleavage on the regulation of complement activation.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Peptídeo Hidrolases/metabolismo , Treponema denticola/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/metabolismo , Ligação Competitiva , Fator H do Complemento/química , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas , Proteólise
4.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755505

RESUMO

The large genome of human cytomegalovirus (HCMV) is transcribed by RNA polymerase II (Pol II). However, it is not known how closely this betaherpesvirus follows host transcriptional paradigms. We applied PRO-Seq and PRO-Cap methods to profile and quantify transcription initiation and productive elongation across the host and virus genomes in late infection. A major similarity between host transcription and viral transcription is that treatment of cells with the P-TEFb inhibitor flavopiridol preempts virtually all productive elongation, which otherwise covers most of the HCMV genome. The deep, nucleotide resolution identification of transcription start sites (TSSs) enabled an extensive analysis of core promoter elements. An important difference between host and viral transcription is that initiation is much more pervasive on the HCMV genome. The sequence preferences in the initiator region around the TSS and the utilization of upstream T/A-rich elements are different. Upstream TATA positions the TSS and boosts initiation in both the host and the virus, but upstream TATT has a significant stimulatory impact only on the viral template. The major immediate early (MIE) promoter remained active during late infection and was accompanied by transcription of both strands of the MIE enhancer from promoters within the enhancer. Surprisingly, we found that the long noncoding RNA4.9 is intimately associated with the viral origin of replication (oriLyt) and was transcribed to a higher level than any other viral or host promoter. Finally, our results significantly contribute to the idea that late in infection, transcription takes place on viral genomes that are not highly chromatinized.IMPORTANCE Human cytomegalovirus infects more than half of humans, persists silently in virtually all tissues, and produces life-threatening disease in immunocompromised individuals. HCMV is also the most common infectious cause of birth defects and the leading nongenetic cause of sensorineural hearing loss in the United States. Because there is no vaccine and current drugs have problems with potency, toxicity, and antiviral drug resistance, alternative treatment strategies that target different points of viral control are needed. Our current study contributes to this goal by applying newly developed methods to examine transcription of the HCMV and host genomes at nucleotide resolution in an attempt to find targetable differences between the two. After a thorough analysis of productive elongation and of core promoter element usage, we found that some mechanisms of regulating transcription are shared between the host and HCMV but that others are distinctly different. This suggests that HCMV transcription may be a legitimate target for future antiviral therapies and this might translate to other herpesviruses.


Assuntos
Citomegalovirus/genética , Genoma Humano , Genoma Viral , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Células Cultivadas , Inibidores Enzimáticos/metabolismo , Flavonoides/metabolismo , Humanos , Piperidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA