Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Korean J Physiol Pharmacol ; 28(4): 335-344, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38926841

RESUMO

Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

2.
Pflugers Arch ; 475(2): 217-231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274100

RESUMO

An aberrant late sodium current (INa,Late) caused by a mutation in the cardiac sodium channel (Nav1.5) has emerged as a contributor to electrical remodeling that causes susceptibility to atrial fibrillation (AF). Although downregulation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with AF, the molecular mechanisms underlying the negative regulation of INa,Late in AF remain unclear, and potential therapeutic approaches are needed. In this work, we constructed a tachypacing-induced cellular model of AF by exposing HL-1 myocytes to rapid electrical stimulation (1.5 V/cm, 4 ms, 10 Hz) for 6 h. Then, we gathered data using confocal Ca2+ imaging, immunofluorescence, patch-clamp recordings, and immunoblots. The tachypacing cells displayed irregular Ca2+ release, delayed afterdepolarization, prolonged action potential duration, and reduced PI3K/Akt signaling compared with controls. Those detrimental effects were related to increased INa,Late and were significantly mediated by treatment with the INa,Late blocker ranolazine. Furthermore, decreased PI3K/Akt signaling via PI3K inhibition increased INa,Late and subsequent aberrant myocyte excitability, which were abolished by INa,Late inhibition, suggesting that PI3K/Akt signaling is responsible for regulating pathogenic INa,Late. These results indicate that PI3K/Akt signaling is critical for regulating INa,Late and electrical remodeling, supporting the use of PI3K/Akt-mediated INa,Late as a therapeutic target for AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase/farmacologia , Remodelamento Atrial/fisiologia , Sódio , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Átrios do Coração
3.
Curr Issues Mol Biol ; 45(1): 233-248, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36661504

RESUMO

The expression of pluripotency factors, and their associations with clinicopathological parameters and drug response have been described in various cancers, including gastric cancer. This study investigated the association of pluripotency factor expression with the clinicopathological characteristics of gastric cancer patients, as well as changes in the expression of these factors upon the stem cell-enriching spheroid culture of gastric cancer cells, regulation of sphere-forming capacity, and response to cisplatin and TRAIL treatments by Nanog and KLF4. Nanog expression was significantly associated with the emergence of a new tumor and a worse prognosis in gastric cancer patients. The expression of the pluripotency factors varied among six gastric cancer cells. KLF4 and Nanog were expressed high in SNU-601, whereas SOX2 was expressed high in SNU-484. The expression of KLF4 and SOX2 was increased upon the spheroid culture of SNU-601 (KLF4/Nanog-high) and SNU-638 (KLF4/Nanog-low). The spheroid culture of them enhanced TRAIL-induced viability reduction, which was accompanied by the upregulation of death receptors, DR4 and DR5. Knockdown and overexpression of Nanog in SNU-601 and SNU-638, respectively, did not affect spheroid-forming capacity, however, its expression was inversely correlated with DR4/DR5 expression and TRAIL sensitivity. In contrast, KLF4 overexpression in SNU-638 increased spheroid formation, susceptibility to cisplatin and TRAIL treatments, and DR4/DR5 expression, while the opposite was found in KLF4-silenced SNU-601. KLF4 is supposed to play a critical role in DR4/DR5 expression and responses to TRAIL and cisplatin, whereas Nanog is only implicated in the former events only. Direct regulation of death receptor expression and TRAIL response by KLF4 and Nanog have not been well documented previously, and the regulatory mechanism behind the process remains to be elucidated.

4.
J Mol Cell Cardiol ; 143: 38-50, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305361

RESUMO

Atrial myocytes are continuously exposed to shear stress during cardiac cycles. Previous reports have shown that shear stress induces two different types of global Ca2+ signaling in atrial myocytes-longitudinal Ca2+ waves (L-waves) and action potential-involved transverse waves (T-waves), and suggested an underlying role of the autocrine activation of P2 receptors. We explored the correlations between ATP release and Ca2+ wave generation in atrial myocytes and investigated why the cells develop two Ca2+-wave types during the same shear force. We examined whether ATP release correlates with different shear-stress (~16 dyn/cm2)-mediated Ca2+ signaling by simultaneous measurement of local Ca2+ and ATP release in individual atrial myocytes using two-dimensional confocal imaging and sniffer patch techniques, respectively. Functional P2X7-receptor-expressing HEK293 cells were established as sniffer cells, which generated currents in real time in response to ATP released from a closely positioned atrial myocyte. Both shear-stress-induced L- and T-waves were preceded by sniffer currents with no difference in the current magnitude. Left atrial (LA) myocytes had two- to three-fold larger sniffer currents than right atrial (RA) cells, as was confirmed by ATP chemiluminescence assay. Shear-stress-induced ATP release was eliminated by connexin (Cx) 43 hemichannel inhibition using La3+, Gap19, or knock-down of Cx43 expression. The level of phosphorylated Cx43 at Ser386 (p-Cx43Ser368), but not total Cx43, was higher in LA versus RA myocytes. Most LA cells (~70%) developed L-waves, whereas most RA myocytes (~80%) presented T-waves. Shear-stress-induced T-waves were completely removed by inhibition of P2X4R, which were most abundant in rat atrial cells. Expression of P2X4R was higher in RA than LA myocytes, whereas expression of P2Y1R, the mediator of L-waves, was higher in LA than RA myocytes. ATP release mainly triggers L-waves in LA myocytes and T-waves in RA myocytes under the same shear force, partly because of the differential expression of P2Y1R and P2X4R between LA and RA myocytes. Higher ATP release in LA myocytes under shear stress may not contribute to determination of the wave pattern.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina , Animais , Conexina 43/metabolismo , Conexinas/metabolismo , Expressão Gênica , Células HEK293 , Átrios do Coração/citologia , Humanos , Masculino , Miócitos Cardíacos/citologia , Fosforilação , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Estresse Mecânico
5.
Biochem Biophys Res Commun ; 527(2): 379-386, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32321644

RESUMO

Although cultured adult cardiac myocytes in combination with cell-level genetic modifications have been adopted for the study of protein function, the cellular alterations caused by the culture conditions themselves need to be clarified before we can interpret the effects of genetically altered proteins. We systematically compared the cellular morphology, global Ca2+ signaling, elementary Ca2+ release (sparks), and arrangement of ryanodine receptor (RyR) clusters in short-term (2 days)-cultured adult rat ventricular myocytes with those of freshly isolated myocytes. The transverse (t)-tubules were remarkably decreased (to ∼25%) by culture, and whole-cell capacitance was reduced by ∼35%. The magnitude of depolarization-induced Ca2+ transients decreased to ∼50%, and Ca2+ transient decay was slowed by culture. The culture did not affect sarcoplasmic reticulum (SR) Ca2+ loading. Therefore, fractional Ca2+ release was attenuated by culture. In the cultured cells, the L-type Ca2+ current (ICa) was smaller (∼50% of controls) and its inactivation was slower. In cultured myocytes, there were significantly fewer (∼50% of control) Ca2+ sparks, the local Ca2+ releases through RyR clusters, compared with in freshly isolated cells. Amplitude and kinetics (duration and time-to-peak) of individual sparks were similar, but they showed greater width in cultured cells. Immunolocalization analysis revealed that the cross-striation of RyRs distribution became weaker and less organized, and that the density of RyR clusters decreased in cultured myocytes. Our data suggest that the loss of t-tubules and generation of compromised Ca2+ transients and ICa in short-term adult ventricular cell culture are independent of SR Ca2+ loading status. In addition, the deteriorated arrangement of the RyR-clusters and their decreased density after short-term culture may be partly responsible for fewer Ca2+ sparks and a decrease in global Ca2+ release.


Assuntos
Sinalização do Cálcio , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Ventrículos do Coração/metabolismo , Masculino , Miócitos Cardíacos/citologia , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Int J Med Sci ; 16(11): 1412-1423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673231

RESUMO

Resistance against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death of cancer cells is a major obstacle in clinical application of TRAIL. Variable response to TRAIL of gastric cancer cells, synergy of TRAIL with bortezomib and potential mechanisms behind the phenomena were investigated in this study. The response to TRAIL varied among six gastric cancer cell lines, which correlated with the expression of apoptotic TRAIL receptors. Analysis of TCGA gene expression data showed that DR4 expression correlated with DR5 in gastric cancer. Although higher expression of DR4 was significantly associated with lower T, N and TNM stages, neither DR4 nor DR5 expression meaningfully influenced overall survival rate. Combined treatment of TRAIL with bortezomib resulted in strong synergistic response with enhanced activation of caspases-8, -9 and -3, and increased Annexin V-binding cell fractions in TRAIL-resistant SNU-216 cells. Bortezomib increased the expression of p21cip1/waf1, but p21cip1/waf1 silencing did not restore cell viability significantly. Bortezomib also increased DR5 expression and knockdown of DR5 expression significantly recovered cell viability reduced by the combination treatment. Bortezomib decreased phosphorylation of ERK1/2, but increased that of JNK. Treatment with either an ERK1/2 inhibitor U0126 or a JNK inhibitor SP600125 rescued SNU-216 from dying of bortezomib or combined treatment. However, upregulation of DR5 by bortezomib was knocked down only by inhibition of ERK1/2 activation significantly, but not by JNK activity inhibition. In summary, upregulation of DR5 by bortezomib is of critical significance in the synergy of bortezomib with TRAIL in apoptosis of TRAIL-resistant SNU-216 and that activity of ERK1/2 is required in the bortezomib-induced DR5 overexpression.


Assuntos
Bortezomib/administração & dosagem , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Neoplasias Gástricas/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/genética , Idoso , Antracenos/farmacologia , Apoptose/efeitos dos fármacos , Butadienos/farmacologia , Caspases/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Nitrilas/farmacologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Quinases Ativadas por p21/genética
7.
Biochem Biophys Res Commun ; 503(4): 2998-3002, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30122316

RESUMO

Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) is expressed in atrial muscle, but not in ventricle, and they are abundant in the perinucleus. We investigated the role of IP3R1 in the regulations of local Ca2+ signal and cell size in HL-1 atrial myocytes under stimulation by IP3-generating chemical messenger, ATP. Assessment of nuclear and cytosolic Ca2+ signal using confocal Ca2+ imaging revealed that IP3 generation by ATP (1 mM) induced monophasic nuclear Ca2+ increase, followed by cytosolic Ca2+ oscillation. Genetic knock-down (KD) of IP3R1 eliminated the monophasic nuclear Ca2+ signal and slowed the cytosolic Ca2+ oscillation upon ATP exposure. Prolonged application of ATP as well as other known hypertrophic agonists (endothelin-1 and phenylephrine) increased cell size in wild-type cells, but not in IP3R1 KD cells. Our data indicate that IP3R1 mediates sustained elevation in nuclear Ca2+ level and facilitates cytosolic Ca2+ oscillation upon external ATP increase, and further suggests possible role of nuclear IP3R1 in atrial hypertrophy.


Assuntos
Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Hipertrofia/etiologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/etiologia , Crescimento Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Átrios do Coração/patologia , Camundongos
8.
Exp Mol Med ; 54(3): 239-251, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260799

RESUMO

Chronic exposure to bile acid in the liver due to impaired bile flow induces cholestatic liver disease, resulting in hepatotoxicity and liver fibrosis. Sestrin2, a highly conserved, stress-inducible protein, has been implicated in cellular responses to multiple stress conditions and the maintenance of cellular homeostasis. However, its role in cholestatic liver injury is not fully understood. In this study, we investigated the role of hepatic Sestrin2 in cholestatic liver injury and its underlying mechanisms using in vivo and in vitro approaches. Hepatic Sestrin2 expression was upregulated by activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein-ß (C/EBP-ß) after treatment with bile acids and correlated with endoplasmic reticulum (ER) stress responses. Bile-duct ligation (BDL)-induced hepatocellular apoptosis and liver fibrosis were exacerbated in Sestrin2-knockout (Sesn2-/-) mice. Moreover, Sestrin2 deficiency enhanced cholestasis-induced hepatic ER stress, whereas Sestrin2 overexpression ameliorated bile acid-induced ER stress. Notably, the mammalian target of rapamycin (mTOR) inhibitor rapamycin and the AMP-activated protein kinase (AMPK) activator AICAR reversed bile acid-induced ER stress in Sestrin2-deficient cells. Furthermore, Sestrin2 deficiency promoted cholestasis-induced hepatic pyroptosis by activating NLRP3 inflammasomes. Thus, our study provides evidence for the biological significance of Sestrin2 and its relationship with cholestatic liver injury, suggesting the potential role of Sestrin2 in regulating ER stress and inflammasome activation during cholestatic liver injury.


Assuntos
Colestase , Inflamassomos , Peroxidases , Animais , Colestase/metabolismo , Estresse do Retículo Endoplasmático , Inflamassomos/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peroxidases/genética , Piroptose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA