Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 48(5): 384-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431976

RESUMO

To find a better composting process with low greenhouse gas emission and high humus production, the effect of adding kitchen waste on reduction and humification of organic matter during straw composting was studied. Three processes were compared, consisting of different ratios of straw and kitchen waste (1:2, 1:1, and 2:1). At four time points over a 62-d incubation, the reduction and humification of compost was evaluated by measuring the total mass, carbon content, and humic material content of the compost. Treatment 1 (straw/kitchen waste ratio of 1:2) reduced the total mass of compost the most. Treatment 2 (straw/kitchen waste ratio of 1:1) reduced the total carbon content the most, reflecting the highest emission of greenhouse gas. Treatment 3 produced the most humic acid material and released the lowest amount of carbon. Hence, from the point of view of reducing greenhouse gas emissions and increasing stable organic matter such as humus and humic acid during composting, treatment #3 was optimal. The three treatments resulted in significant differences in microbial biomass and enzyme activity during composting. The highest amount of active microbial biomass was associated with the largest reduction in compost mass (treatment 1). Higher proportions of straw (treatments 2 and 3), which contains more lignin, were associated with greater ß-glycosidase activity, which may generate more humus that can improve soil quality. Dehydrogenase activity seemed to be the most important microbial factor in organic carbon catabolism or humification.


Assuntos
Substâncias Húmicas/análise , Caules de Planta/química , Eliminação de Resíduos/métodos , Esgotos/química , Caules de Planta/microbiologia , Esgotos/microbiologia , Solo/química , Microbiologia do Solo , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-22870994

RESUMO

To validate the possibility of horizontal gene transfer (HGT) from thermally denatured recombinant DNA discharged into the eco-system, a constructed plasmid was used to investigate the persistence and renaturation efficiency of thermally denatured recombinant DNA in defined aquatic microcosms. The results revealed that there was undecayed recombinant plasmid pMDLKJ material being discharged into the aquatic microcosms even after thermal treatment at either 100°C (using boiling water) or at 120°C (using an autoclave). The plasmid had a relatively long persistence time. At least 10(2) copies µL(-1) of a specific 245 bp fragment of the plasmid could be detected after 12 h and a specific 628 bp fragment could be detected up to 2 h. The thermally denatured recombinant DNA could efficiently renature and recover its functional double stranded structure in aquatic microcosms and the highest concentration of double-stranded DNA (dsDNA) occurred around 1 h after the thermally denatured DNA was added to the system. These results imply that when thermally treated recombinant DNAs are discharged into aquatic environments, they have enough time to renature and possibly transfer to other organisms. In addition, the recombinant DNA added to aquatic microcosms could be absorbed by the seston particles in water, such as mineral, organic and colloids particles with a maximum absorption value of about 5.18 ng L(-1). This absorbed DNA could persist longer in aquatic environments than free recombinant DNA, thus further favoring HGT.


Assuntos
DNA Recombinante/genética , Desnaturação de Ácido Nucleico/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética , Temperatura , Microbiologia da Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-22092240

RESUMO

It has been shown that thermal-treatment at 100 ° C can denature deoxyribonucleic acid (DNA), yet this does not cause it to break down completely. To clarify the risk of gene pollution from thermal-treated recombinant DNA, the renaturation characteristics of thermal-denatured plasmid pET-28b and its persistence in aquatic environments were investigated. The results revealed that the double-stranded structure and transforming activity of the thermal-treated plasmid DNA could be recovered even if the thermal-treatment was conducted at 120 ° C. The presence of sodium chloride (NaCl) and ethylenediamine tetraacetic acid (EDTA) led to the increase of renaturation efficiency of the denatured DNA. When thermal-treated plasmid DNA was discharged into simulated aquatic environments with pH values from 5 to 9, it showed a longer persistence at pH 7 and 8 than that at 5, 6 and 9; however, the denatured plasmid DNA could persist for more than 33 min at any pH. Moreover, a higher ionic strength further protected the thermal-denatured plasmids from degradation in the simulated aquatic environment. These results indicated that when the thermal-treated DNA was discharged into an aquatic environment, it might not break down completely in a short period. Therefore, there is the potential for the discarded DNA to renature and transform, which might result in gene pollution.


Assuntos
DNA/química , Plasmídeos/química , Poluentes da Água/química , Purificação da Água/métodos , Ácido Edético/química , Meio Ambiente , Temperatura Alta , Concentração de Íons de Hidrogênio , Desnaturação de Ácido Nucleico , Renaturação de Ácido Nucleico , Reação em Cadeia da Polimerase , Cloreto de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA