Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 132(21)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604795

RESUMO

Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of ß1 integrin and of the ß-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.


Assuntos
Caderinas/metabolismo , Movimento Celular/fisiologia , Colágeno/metabolismo , Decorina/metabolismo , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Fenômenos Mecânicos , Proteína cdc42 de Ligação ao GTP/metabolismo
2.
J Cell Biol ; 212(2): 199-217, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26783302

RESUMO

Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell-cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/ß-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through ß-PIX, which is specifically recruited at cell-cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through ß-PIX-mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.


Assuntos
Caderinas/metabolismo , Movimento Celular , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Fenômenos Biomecânicos , Polaridade Celular , Células Cultivadas , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA